cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016578 Decimal expansion of log(3/2).

Original entry on oeis.org

4, 0, 5, 4, 6, 5, 1, 0, 8, 1, 0, 8, 1, 6, 4, 3, 8, 1, 9, 7, 8, 0, 1, 3, 1, 1, 5, 4, 6, 4, 3, 4, 9, 1, 3, 6, 5, 7, 1, 9, 9, 0, 4, 2, 3, 4, 6, 2, 4, 9, 4, 1, 9, 7, 6, 1, 4, 0, 1, 4, 3, 2, 4, 1, 4, 4, 1, 0, 0, 6, 7, 1, 2, 4, 8, 9, 1, 4, 2, 5, 1, 2, 6, 7, 7, 5, 2, 4, 2, 7, 8, 1, 7, 3, 1, 3, 4, 0
Offset: 0

Views

Author

Keywords

Examples

			0.4054651081081643819780131154643491365719904234624941976140143...
		

References

  • L. B. W. Jolley, Summation of Series, Dover (1961), eq (102), page 20.

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[3/2],10,111][[1]] (* Robert G. Wilson v, Aug 08 2011 *)
  • PARI
    default(realprecision, 20080); x=10*log(3/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b016578.txt", n, " ", d)); \\ Harry J. Smith, May 17 2009

Formula

Equals Sum {k>=1} 1/(k*3^k). - Robert G. Wilson v, Aug 08 2011
Equals 1/2 - 1/(2*2^2) + 1/(3*2^3) - 1/(4*2^4) + ... [Jolley].
Equals A002391-A002162. - Michel Marcus, Sep 17 2016
From Amiram Eldar, Aug 07 2020: (Start)
Equals 2 * arctanh(1/5).
Equals Integral_{x=0..oo} 1/(2*exp(x) + 1) dx. (End)
log(3/2) = 2*Sum_{n >= 1} 1/(n*P(n, 5)*P(n-1, 5)), where P(n, x) denotes the n-th Legendre polynomial. The first 10 terms of the series gives the approximation log(3/2) = 0.40546510810816438197(04...), correct to 20 decimal places. - Peter Bala, Mar 16 2024
Equals Sum_{n >= 1} (-1)^(n+1) * 5/(n*binomial(2*n, n)*6^n). The n-th term of the series is O(5*sqrt(Pi/n)*1/24^n). - Peter Bala, Mar 04 2025
Equals Integral_{x=0..1} (sqrt(x) - 1)/log(x) dx. - Kritsada Moomuang, Jun 14 2025