cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016628 Decimal expansion of log(5).

Original entry on oeis.org

1, 6, 0, 9, 4, 3, 7, 9, 1, 2, 4, 3, 4, 1, 0, 0, 3, 7, 4, 6, 0, 0, 7, 5, 9, 3, 3, 3, 2, 2, 6, 1, 8, 7, 6, 3, 9, 5, 2, 5, 6, 0, 1, 3, 5, 4, 2, 6, 8, 5, 1, 7, 7, 2, 1, 9, 1, 2, 6, 4, 7, 8, 9, 1, 4, 7, 4, 1, 7, 8, 9, 8, 7, 7, 0, 7, 6, 5, 7, 7, 6, 4, 6, 3, 0, 1, 3, 3, 8, 7, 8, 0, 9, 3, 1, 7, 9, 6, 1
Offset: 1

Views

Author

Keywords

Examples

			1.60943791243410037460075933322618763952560135426851772191264789... - _Harry J. Smith_, May 16 2009
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
  • Horace S. Uhler, Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17. Proc. Nat. Acad. Sci. U. S. A. 26, (1940). 205-212.

Crossrefs

Cf. A016733 (continued fraction). - Harry J. Smith, May 16 2009

Programs

  • Mathematica
    RealDigits[Log[5], 10, 125][[1]] (* Alonso del Arte, Oct 04 2014 *)
  • PARI
    default(realprecision, 20080); x=log(5); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016628.txt", n, " ", d)); \\ Harry J. Smith, May 16 2009

Formula

From Peter Bala, Nov 11 2019: (Start)
log(5) = 2*sqrt(2)*Integral_{t = 0..sqrt(2)/2} (1 - t^2)/(1 + t^4) dt.
log(5) = Sum_{n >= 0} (4*n+5)/((4*n+1)*(4*n+3))*(-1/4)^n.
log(5) = (1/4)*Sum_{n >= 0} ( 8/(8*n+1) - 4/(8*n+3) - 2/(8*n+5) + 1/(8*n+7) )*(1/16)^n, a BBP-type formula. (End)
log(5) = 2*Sum_{n >= 0} (-1)^(n*(n+1)/2)*1/((2*n+1)*2^n). - Peter Bala, Oct 29 2020
log(5) = Integral_{x = 0..1} (x^4 - 1)/log(x) dx. - Peter Bala, Nov 14 2020
log(5) = 2*Sum_{n >= 1} 1/(n*P(n, 3/2)*P(n-1, 3/2)), where P(n, x) denotes the n-th Legendre polynomial. The first 20 terms of the series gives the approximation log(5) = 1.6094379124341003(29...), correct to 16 decimal places. - Peter Bala, Mar 18 2024