cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A002392 Decimal expansion of natural logarithm of 10.

Original entry on oeis.org

2, 3, 0, 2, 5, 8, 5, 0, 9, 2, 9, 9, 4, 0, 4, 5, 6, 8, 4, 0, 1, 7, 9, 9, 1, 4, 5, 4, 6, 8, 4, 3, 6, 4, 2, 0, 7, 6, 0, 1, 1, 0, 1, 4, 8, 8, 6, 2, 8, 7, 7, 2, 9, 7, 6, 0, 3, 3, 3, 2, 7, 9, 0, 0, 9, 6, 7, 5, 7, 2, 6, 0, 9, 6, 7, 7, 3, 5, 2, 4, 8, 0, 2, 3, 5, 9, 9
Offset: 1

Views

Author

Keywords

Examples

			2.302585092994045684017991454684364207601101488628772976033327900967572...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 143.
  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 25, pages 227, 232.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 45.

Crossrefs

Cf. A016738 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[10],10,120][[1]] (* Harvey P. Dale, Nov 23 2013 *)
  • PARI
    default(realprecision, 20080); x=log(10); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002392.txt", n, " ", d)); \\ Harry J. Smith, Apr 16 2009

Formula

Equals A002162 + A016628. - R. J. Mathar, Jul 22 2025

A166486 Periodic sequence [0,1,1,1] of length 4; Characteristic function of numbers that are not multiples of 4.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 15 2009

Keywords

Examples

			G.f. = x + x^2 + x^3 + x^5 + x^6 + x^7 + x^9 + x^10 + x^11 + x^13 + x^14 + ...
		

Crossrefs

Characteristic function of A042968, whose complement A008586 gives the positions of zeros (after its initial term).
Absolute values of A046978, A075553, A131729, A358839, and for n >= 1, also of A112299 and of A257196.
Sequence A152822 shifted by two terms.
Row 3 of A225145, Column 2 of A229940 (after the initial term).
First differences of A057353. Sum of A359370 and A359372.
Cf. A000035, A011655, A011558, A097325, A109720, A168181, A168182, A168184, A145568, A168185 (characteristic functions for numbers that are not multiples of k = 2, 3 and 5..12).
Cf. A010873, A033436, A069733 (inverse Möbius transform), A121262 (one's complement), A190621 [= n*a(n)], A355689 (Dirichlet inverse).

Programs

  • Magma
    [Ceiling(n/4)-Floor(n/4) : n in [0..50]]; // Wesley Ivan Hurt, Jun 20 2014
    
  • Maple
    seq(1/2*((n^3+n) mod 4), n=0..50); # Gary Detlefs, Mar 20 2010
  • Mathematica
    PadRight[{},120,{0,1,1,1}] (* Harvey P. Dale, Jul 04 2013 *)
    Table[Ceiling[n/4] - Floor[n/4], {n, 0, 100}] (* Wesley Ivan Hurt, Jun 20 2014 *)
    a[ n_] := Sign[ Mod[n, 4]]; (* Michael Somos, May 05 2015 *)
  • PARI
    {a(n) = !!(n%4)};
    
  • Python
    def A166486(n): return (0,1,1,1)[n&3] # Chai Wah Wu, Jan 03 2023

Formula

G.f.: (x + x^2 + x^3) / (1 - x^4) = x * (1 + x + x^2) / ((1 - x) * (1 + x) * (1 + x^2)) = x * (1 - x^3) / ((1 - x) * (1 - x^4)).
a(n) = (3 - i^n - (-i)^n - (-1)^n) / 4, where i=sqrt(-1).
Sum_{k>0} a(k)/(k*3^k) = log(5)/4.
From Reinhard Zumkeller, Nov 30 2009: (Start)
Multiplicative with a(p^e) = (if p=2 then 0^(e-1) else 1), p prime and e>0.
a(n) = 1-A121262(n).
a(A042968(n))=1; a(A008586(n))=0.
A033436(n) = Sum{k=0..n} a(k)*(n-k). (End)
a(n) = 1/2*((n^3+n) mod 4). - Gary Detlefs, Mar 20 2010
a(n) = (Fibonacci(n)*Fibonacci(3n) mod 3)/2. - Gary Detlefs Dec 21 2010
Euler transform of length 4 sequence [ 1, 0, -1, 1]. - Michael Somos, Feb 12 2011
Dirichlet g.f. (1-1/4^s)*zeta(s). - R. J. Mathar, Feb 19 2011
a(n) = Fibonacci(n)^2 mod 3. - Gary Detlefs, May 16 2011
a(n) = -1/4*cos(Pi*n)-1/2*cos(1/2*Pi*n)+3/4. - Leonid Bedratyuk, May 13 2012
For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = ceiling(n/4) - floor(n/4). - Wesley Ivan Hurt, Jun 20 2014
a(n) = a(-n) for all n in Z. - Michael Somos, May 05 2015
For n >= 1, a(n) = A053866(A225546(n)) = A000035(A331733(n)). - Antti Karttunen, Jul 07 2020
a(n) = signum(n mod 4). - Alois P. Heinz, May 12 2021
From Antti Karttunen, Dec 28 2022: (Start)
a(n) = [A010873(n) > 0], where [ ] is the Iverson bracket.
a(n) = abs(A046978(n)) = abs(A075553(n)) = abs(A131729(n)) = abs(A358839(n)).
For all n >= 1, a(n) = abs(A112299(n)) = abs(A257196(n))
a(n) = A152822(2+n).
a(n) = A359370(n) + A359372(n). (End)
E.g.f.: (cosh(x) - cos(x))/2 + sinh(x). - Stefano Spezia, Aug 04 2025

Extensions

Secondary definition (from Reinhard Zumkeller's Nov 30 2009 comment) added to the name by Antti Karttunen, Dec 20 2022

A079586 Decimal expansion of Sum_{k>=1} 1/F(k) where F(k) is the k-th Fibonacci number A000045(k).

Original entry on oeis.org

3, 3, 5, 9, 8, 8, 5, 6, 6, 6, 2, 4, 3, 1, 7, 7, 5, 5, 3, 1, 7, 2, 0, 1, 1, 3, 0, 2, 9, 1, 8, 9, 2, 7, 1, 7, 9, 6, 8, 8, 9, 0, 5, 1, 3, 3, 7, 3, 1, 9, 6, 8, 4, 8, 6, 4, 9, 5, 5, 5, 3, 8, 1, 5, 3, 2, 5, 1, 3, 0, 3, 1, 8, 9, 9, 6, 6, 8, 3, 3, 8, 3, 6, 1, 5, 4, 1, 6, 2, 1, 6, 4, 5, 6, 7, 9, 0, 0, 8, 7, 2, 9, 7, 0, 4
Offset: 1

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

André-Jeannin proved that this constant is irrational.
This constant does not belong to the quadratic number field Q(sqrt(5)) (Bundschuh and Väänänen, 1994). - Amiram Eldar, Oct 30 2020

Examples

			3.35988566624317755317201130291892717968890513373...
		

References

  • Daniel Duverney, Number Theory, World Scientific, 2010, 5.22, pp.75-76.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358.

Crossrefs

Programs

  • Maple
    Digits := 120: c := Pi/2 + I*arccsch(2):
    Jeannin := n -> sqrt(5/4)*add(I^(1-j)/sin(j*c), j = 1..n):
    evalf(Jeannin(1000)); # Peter Luschny, Nov 15 2023
  • Mathematica
    digits = 105; Sqrt[5]*NSum[(-1)^n/(GoldenRatio^(2*n + 1) - (-1)^n), {n, 0, Infinity}, WorkingPrecision -> digits, NSumTerms -> digits] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Apr 09 2013 *)
    First@RealDigits[Sqrt[5]/4 ((Log[5] + 2 QPolyGamma[1, 1/GoldenRatio^4] - 4 QPolyGamma[1, 1/GoldenRatio^2])/(2 Log[GoldenRatio]) + EllipticTheta[2, 0, 1/GoldenRatio^2]^2), 10, 105] (* Vladimir Reshetnikov, Nov 18 2015 *)
  • PARI
    /* Fast computation without splitting into even and odd indices, see the Arndt reference */
    lambert2(x, a, S)=
    {
    /* Return G(x,a) = Sum_{n>=1} a*x^n/(1-a*x^n) (generalized Lambert series)
       computed as Sum_{n=1..S} x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) )
       As series in x correct up to order S^2.
       We also have G(x,a) = Sum_{n>=1} a^n*x^n/(1-x^n) */
        return( sum(n=1,S, x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) ) ) );
    }
    inv_fib_sum(p=1, q=1, S)=
    {
    /* Return Sum_{n>=1} 1/f(n) where f(0)=0, f(1)=1, f(n) = p*f(n-1) + q*f(n-1)
       computed using generalized Lambert series.
       Must have p^2+4*q > 0 */
        my(al,be);
        \\ Note: the q here is -q in the Horadam paper.
        \\ The following numerical examples are for p=q=1:
        al=1/2*(p+sqrt(p^2+4*q));  \\ == +1.6180339887498...
        be=1/2*(p-sqrt(p^2+4*q));  \\ == -0.6180339887498...
        return( (al-be)*( 1/(al-1) + lambert2(be/al, 1/al, S) ) ); \\ == 3.3598856...
    }
    default(realprecision,100);
    S = 1000; /* (be/al)^S == -0.381966^S == -1.05856*10^418 << 10^-100 */
    inv_fib_sum(1,1,S) /* 3.3598856... */ /* Joerg Arndt, Jan 30 2011 */
    
  • PARI
    suminf(k=1, 1/(fibonacci(k))) \\ Michel Marcus, Feb 19 2019
    
  • Sage
    m=120; numerical_approx(sum(1/fibonacci(k) for k in (1..10*m)), digits=m) # G. C. Greubel, Feb 20 2019

Formula

Alternating series representation: 3 + Sum_{k >= 1} (-1)^(k+1)/(F(k)*F(k+1)*F(k+2)). - Peter Bala, Nov 30 2013
From Amiram Eldar, Oct 04 2020: (Start)
Equals sqrt(5) * Sum_{k>=0} (1/(phi^(2*k+1) - 1) - 2*phi^(2*k+1)/(phi^(4*(2*k+1)) - 1)), where phi is the golden ratio (A001622) (Greig, 1977).
Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) - (-1)^k) (Griffin, 1992).
Equals A153386 + A153387. (End)
From Gleb Koloskov, Sep 14 2021: (Start)
Equals 1 + c1*(c2 + 32*Integral_{x=0..infinity} f(x) dx),
where c1 = sqrt(5)/(8*log(phi)) = A002163/(8*A002390),
c2 = 2*arctan(2)+log(5) = 2*A105199+A016628,
phi = (1+sqrt(5))/2 = A001622,
f(x) = sin(x)*(4+cos(2*x))/((exp(Pi*x/log(phi))-1)*(2*cos(2*x)+3)*(7-2*cos(2*x))) (End)
From Amiram Eldar, Jan 27 2022: (Start)
Equals 3 + 2 * Sum_{k>=1} 1/(F(2*k-1)*F(2*k+1)*F(2*k+2)) (Bruckman, 1987).
Equals 2 + Sum_{k>=1} 1/A350901(k) (André-Jeannin, Problem H-450, 1991).
Equals lim_{n->oo} A350903(n)/(A350904(n)*A350902(n)) (André-Jeannin, 1991). (End)
Equals sqrt(5/4)*Sum_{j>=1} i^(1-j)/sin(j*c) where c = Pi/2 + i*arccsch(2). - Peter Luschny, Nov 15 2023
Equals lim_{n->oo} A203006(n)/A003266(n) (Z.W. M. Trzaska, 1996). - Raul Prisacariu, Sep 04 2024

A153386 Decimal expansion of Sum_{n>=1} 1/Fibonacci(2*n).

Original entry on oeis.org

1, 5, 3, 5, 3, 7, 0, 5, 0, 8, 8, 3, 6, 2, 5, 2, 9, 8, 5, 0, 2, 9, 8, 5, 2, 8, 9, 6, 6, 5, 1, 5, 9, 9, 0, 0, 6, 3, 6, 7, 0, 1, 1, 5, 9, 1, 0, 7, 1, 1, 3, 8, 5, 6, 3, 2, 3, 5, 2, 6, 3, 6, 6, 5, 1, 3, 1, 0, 4, 7, 2, 7, 8, 6, 2, 8, 9, 0, 9, 4, 1, 6, 0, 1, 6, 5, 0, 2, 3, 1, 6, 6, 3, 6, 9, 6, 9, 3, 3, 6, 5, 3, 2, 7, 9
Offset: 1

Views

Author

Eric W. Weisstein, Dec 25 2008

Keywords

Examples

			1.535370508836252985029852896651599006367...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.14.1, p. 358.

Crossrefs

Programs

  • Mathematica
    rd[k_] := rd[k] = RealDigits[ N[ Sum[ 1/Fibonacci[2*n], {n, 1, 2^k}], 105]][[1]]; rd[k = 4]; While[ rd[k] != rd[k - 1], k++]; rd[k] (* Jean-François Alcover, Oct 29 2012 *)
    RealDigits[Sqrt[5] * (Log[5] + 2*QPolyGamma[0, 1, 1/GoldenRatio^4] - 4*QPolyGamma[0, 1, 1/GoldenRatio^2]) / (8*ArcCsch[2]), 10, 105][[1]] (* Vaclav Kotesovec, Feb 26 2023 *)
  • PARI
    sumpos(n=1, 1/fibonacci(2*n)) \\ Michel Marcus, Sep 04 2021

Formula

Equals sqrt(5) * (L((3-sqrt(5))/2) - L((7-3*sqrt(5))/2)), where L(x) = Sum_{k>=1} x^k/(1-x^k) (Horadam, 1988, equation (4.6)). - Amiram Eldar, Oct 04 2020
From Gleb Koloskov, Sep 04 2021: (Start)
Equals 1/2 + (sqrt(5)/log(phi))*(log(5)/8 + 3*Integral_{x=0..infinity} sin(x)/((4*sin(x)^2+5)*(exp(Pi*x/log(phi))-1)) dx), where phi = (1+sqrt(5))/2 = A001622.
Equals 1/2 + (A002163/A002390)*(A016628/8 + 3*Integral_{x=0..infinity} sin(x)/((4*sin(x)^2+5)*(A001113^(A000796*x/A002390)-1)) dx). (End)
Equals 1 + Sum_{n>=1} 1/A065563(2*n-1) (André-Jeannin, 1993). - Amiram Eldar, Jan 15 2022
From Peter Bala, Aug 17 2022: (Start)
Equals 5/3 - 3*Sum_{n >= 1} 1/(F(2*n)*F(2*n+2)*F(2*n+4)), where F(n) = Fibonacci(n).
Conjecture: Equals 151/96 - 6*Sum_{n >= 1} 1/(F(2*n)*F(2*n+4)*F(2*n+6)). (End)
Equals A360928 * sqrt(5). - Kevin Ryde, Feb 27 2023

A256779 Decimal expansion of the generalized Euler constant gamma(1,5).

Original entry on oeis.org

7, 3, 5, 9, 2, 0, 3, 9, 6, 8, 3, 1, 6, 1, 7, 5, 8, 4, 1, 8, 9, 2, 8, 9, 7, 2, 5, 8, 4, 4, 7, 5, 2, 8, 9, 3, 0, 5, 9, 9, 9, 7, 3, 8, 3, 9, 8, 7, 6, 2, 5, 0, 1, 7, 6, 5, 2, 6, 4, 2, 1, 5, 4, 5, 4, 3, 4, 8, 9, 1, 5, 3, 2, 7, 6, 7, 9, 2, 3, 7, 7, 5, 8, 3, 2, 8, 8, 7, 8, 9, 2, 4, 5, 2, 7, 8, 1, 5, 0, 3, 2, 2, 4, 8, 8
Offset: 0

Views

Author

Jean-François Alcover, Apr 10 2015

Keywords

Examples

			0.735920396831617584189289725844752893059997383987625...
		

Crossrefs

Cf. A001620 (EulerGamma), A016628, A200135, A228725 (gamma(1,2)), A256425 (gamma(1,3)), A256778-A256784 (selection of ruler-and-compass constructible gamma(r,k)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/5 + Pi(R)/10*Sqrt(1 + 2/Sqrt(5)) + Log(5)/20 + Sqrt(5)/10*Log((1 + Sqrt(5))/2); // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[-Log[5]/5 - PolyGamma[1/5]/5, 10, 105] // First
  • PARI
    Euler/5 + Pi/10*sqrt(1 + 2/sqrt(5)) + log(5)/20 + sqrt(5)/10*log((1 + sqrt(5))/2) \\ Michel Marcus, Apr 10 2015
    

Formula

Equals EulerGamma/5 + Pi/10*sqrt(1 + 2/sqrt(5)) + log(5)/20 + sqrt(5)/10*log((1 + sqrt(5))/2).
Equals Sum_{n>=0} (1/(5n+1) - 2/5*arctanh(5/(10n+7))).
Equals -(psi(1/5) + log(5))/5 = (A200135 - A016628)/5. - Amiram Eldar, Jan 07 2024

A256780 Decimal expansion of the generalized Euler constant gamma(2,5).

Original entry on oeis.org

1, 9, 0, 3, 8, 9, 3, 2, 6, 4, 3, 0, 2, 0, 3, 1, 5, 4, 2, 2, 5, 9, 8, 3, 2, 2, 9, 7, 6, 4, 2, 6, 8, 1, 6, 3, 2, 6, 0, 1, 5, 1, 9, 4, 8, 4, 4, 8, 4, 5, 8, 4, 8, 7, 0, 6, 4, 2, 6, 1, 1, 5, 6, 7, 4, 7, 6, 8, 6, 4, 1, 1, 0, 4, 4, 5, 7, 6, 7, 2, 3, 8, 6, 8, 4, 0, 5, 3, 6, 2, 8, 5, 2, 0, 8, 6, 8, 4, 1, 3, 2, 2, 5, 6, 1
Offset: 0

Views

Author

Jean-François Alcover, Apr 10 2015

Keywords

Examples

			0.190389326430203154225983229764268163260151948448458487...
		

Crossrefs

Cf. A001620 (EulerGamma), A016628, A200136, A228725 (gamma(1,2)), A256425 (gamma(1,3)), A256778-A256784 (selection of ruler-and-compass constructible gamma(r,k)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/5 + Pi(R)/10*Sqrt(1 - 2/Sqrt(5)) + Log(5)/20 - Sqrt(5)/10*Log((1 + Sqrt(5))/2); // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[-Log[5]/5 - PolyGamma[2/5]/5, 10, 105] // First
  • PARI
    Euler/5 + Pi/10*sqrt(1 - 2/sqrt(5)) + log(5)/20 - sqrt(5)/10*log((1 + sqrt(5))/2) \\ Michel Marcus, Apr 10 2015
    

Formula

Equals EulerGamma/5 + Pi/10*sqrt(1 - 2/sqrt(5)) + log(5)/20 - sqrt(5)/10*log((1 + sqrt(5))/2).
Equals Sum_{n>=0} (1/(5n+2) - 2/5*arctanh(5/(10n+9))).
Equals -(psi(2/5) + log(5))/5 = (A200136 - A016628)/5. - Amiram Eldar, Jan 07 2024

A173159 Decimal expansion of the constant x which satisfies x^x = 5.

Original entry on oeis.org

2, 1, 2, 9, 3, 7, 2, 4, 8, 2, 7, 6, 0, 1, 5, 6, 6, 9, 6, 3, 8, 0, 3, 1, 1, 9, 9, 6, 4, 9, 2, 2, 5, 6, 3, 9, 4, 0, 7, 3, 0, 7, 7, 5, 1, 1, 1, 0, 2, 7, 8, 7, 8, 4, 2, 2, 2, 7, 0, 3, 7, 0, 1, 7, 5, 1, 4, 6, 0, 7, 5, 5, 4, 9, 7, 7, 2, 9, 7, 1, 5, 1, 0, 2, 7, 3, 2, 5, 1, 6, 5, 4, 4, 6, 6, 7, 4, 0, 0, 3, 8, 2, 6, 1, 2
Offset: 1

Views

Author

Keywords

Examples

			2.12937248...^2.12937248... = 5.
2.12937248..*log(2.12937248..) = 1.609437... = A016628.
		

Crossrefs

Programs

  • Maple
    Digits := 20 ; fsolve(x^x=5) ; # R. J. Mathar, Mar 11 2010
  • Mathematica
    x=5;RealDigits[Log[x]/ProductLog[Log[x]],10,6! ][[1]]
  • PARI
    log(5)/lambertw(log(5)) \\ Charles R Greathouse IV, Jul 14 2020

Formula

Log(5)/W(log(5)).

Extensions

Keyword:cons added by R. J. Mathar, Mar 11 2010

A322333 Factorial expansion of log(5) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 1, 0, 2, 3, 0, 5, 4, 4, 8, 3, 3, 2, 0, 7, 8, 0, 7, 11, 1, 18, 16, 3, 10, 16, 21, 17, 13, 20, 12, 16, 8, 27, 24, 28, 12, 9, 34, 21, 3, 9, 8, 41, 42, 35, 31, 4, 4, 37, 38, 9, 20, 10, 31, 24, 34, 44, 21, 16, 19, 24, 4, 22, 22, 47, 8, 28, 26, 32, 22, 28, 56, 44, 16, 61, 38, 3, 25, 52, 35, 73, 55, 8, 42, 25, 21, 62, 61, 7, 89, 5, 74, 89, 57, 33, 60, 13, 75, 95, 66
Offset: 1

Views

Author

G. C. Greubel, Dec 03 2018

Keywords

Examples

			log(5) = 1 + 1/2! + 0/3! + 2/4! + 3/5! + 0/6! + 5/7! + 4/8! + ...
		

Crossrefs

Cf. A016628 (decimal expansion), A016733 (continued fraction).
Cf. A067882 (log(2)), A322334 (log(3)), A068460 (log(7)), A068461 (log(11)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Log(5))] cat [Floor(Factorial(n)*Log(5)) - n*Floor(Factorial((n-1))*Log(5)) : n in [2..80]];
    
  • Mathematica
    With[{b = Log[5]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
  • PARI
    default(realprecision, 250); b = log(5); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
    
  • Sage
    def a(n):
        if (n==1): return floor(log(5))
        else: return expand(floor(factorial(n)*log(5)) - n*floor(factorial(n-1)*log(5)))
    [a(n) for n in (1..80)]

A016733 Continued fraction for log(5).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 4, 6, 94, 1, 3, 4, 40, 1, 5, 2, 2, 1, 1, 7, 7, 8, 39, 4, 3, 4, 1, 9, 1, 1, 2, 1, 7, 1, 6, 2, 18, 1, 1, 1, 12, 1, 1, 3, 1, 1, 4, 16, 16, 3, 3, 2, 1, 17, 1, 8, 1, 20, 1, 15, 15, 10, 2, 13, 1, 1, 34, 1, 32, 25
Offset: 0

Views

Author

Keywords

Examples

			1.609437912434100374600759333... = 1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, May 16 2009
		

Crossrefs

Cf. A016628 (decimal expansion). - Harry J. Smith, May 16 2009

Programs

  • Magma
    ContinuedFraction(Log(5)); // G. C. Greubel, Sep 15 2018
  • Mathematica
    ContinuedFraction[Log[5],100] (* Harvey P. Dale, Apr 02 2015 *)
  • PARI
    { default(realprecision, 21000); x=contfrac(log(5)); for (n=1, 20000, write("b016733.txt", n - 1, " ", x[n])); } \\ Harry J. Smith, May 16 2009
    

A113209 Decimal expansion of log(5)/log(3).

Original entry on oeis.org

1, 4, 6, 4, 9, 7, 3, 5, 2, 0, 7, 1, 7, 9, 2, 7, 1, 6, 7, 1, 9, 7, 0, 4, 0, 4, 0, 7, 6, 7, 8, 6, 4, 0, 3, 9, 6, 3, 0, 7, 9, 3, 2, 3, 6, 6, 6, 6, 6, 0, 4, 9, 6, 8, 9, 0, 5, 2, 8, 9, 0, 3, 9, 4, 7, 9, 5, 4, 9, 2, 2, 7, 6, 1, 9, 1, 0, 2, 5, 8, 2, 3, 6, 5, 5, 5, 9, 3, 1, 1, 3, 7, 5, 9, 5, 2, 9, 4, 9, 1, 4, 3
Offset: 1

Views

Author

Eric W. Weisstein, Oct 17 2005

Keywords

Comments

Capacity dimension of the box fractal.
Hausdorff dimension of the graph of Bourbaki's function. McCollum: We examine Bourbaki's function, an easily-constructed continuous but nowhere-differentiable function, and explore properties including functional identities, the antiderivative, and the Hausdorff dimension of the graph. - Jonathan Vos Post, Sep 15 2010

Examples

			1.4649735207179...
		

Crossrefs

Cf. A152914.

Programs

Formula

Equals A016628 divided by A002391. - R. J. Mathar, Sep 08 2013
Showing 1-10 of 24 results. Next