cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A016628 Decimal expansion of log(5).

Original entry on oeis.org

1, 6, 0, 9, 4, 3, 7, 9, 1, 2, 4, 3, 4, 1, 0, 0, 3, 7, 4, 6, 0, 0, 7, 5, 9, 3, 3, 3, 2, 2, 6, 1, 8, 7, 6, 3, 9, 5, 2, 5, 6, 0, 1, 3, 5, 4, 2, 6, 8, 5, 1, 7, 7, 2, 1, 9, 1, 2, 6, 4, 7, 8, 9, 1, 4, 7, 4, 1, 7, 8, 9, 8, 7, 7, 0, 7, 6, 5, 7, 7, 6, 4, 6, 3, 0, 1, 3, 3, 8, 7, 8, 0, 9, 3, 1, 7, 9, 6, 1
Offset: 1

Views

Author

Keywords

Examples

			1.60943791243410037460075933322618763952560135426851772191264789... - _Harry J. Smith_, May 16 2009
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.
  • Horace S. Uhler, Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17. Proc. Nat. Acad. Sci. U. S. A. 26, (1940). 205-212.

Crossrefs

Cf. A016733 (continued fraction). - Harry J. Smith, May 16 2009

Programs

  • Mathematica
    RealDigits[Log[5], 10, 125][[1]] (* Alonso del Arte, Oct 04 2014 *)
  • PARI
    default(realprecision, 20080); x=log(5); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016628.txt", n, " ", d)); \\ Harry J. Smith, May 16 2009

Formula

From Peter Bala, Nov 11 2019: (Start)
log(5) = 2*sqrt(2)*Integral_{t = 0..sqrt(2)/2} (1 - t^2)/(1 + t^4) dt.
log(5) = Sum_{n >= 0} (4*n+5)/((4*n+1)*(4*n+3))*(-1/4)^n.
log(5) = (1/4)*Sum_{n >= 0} ( 8/(8*n+1) - 4/(8*n+3) - 2/(8*n+5) + 1/(8*n+7) )*(1/16)^n, a BBP-type formula. (End)
log(5) = 2*Sum_{n >= 0} (-1)^(n*(n+1)/2)*1/((2*n+1)*2^n). - Peter Bala, Oct 29 2020
log(5) = Integral_{x = 0..1} (x^4 - 1)/log(x) dx. - Peter Bala, Nov 14 2020
log(5) = 2*Sum_{n >= 1} 1/(n*P(n, 3/2)*P(n-1, 3/2)), where P(n, x) denotes the n-th Legendre polynomial. The first 20 terms of the series gives the approximation log(5) = 1.6094379124341003(29...), correct to 16 decimal places. - Peter Bala, Mar 18 2024

A322333 Factorial expansion of log(5) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 1, 0, 2, 3, 0, 5, 4, 4, 8, 3, 3, 2, 0, 7, 8, 0, 7, 11, 1, 18, 16, 3, 10, 16, 21, 17, 13, 20, 12, 16, 8, 27, 24, 28, 12, 9, 34, 21, 3, 9, 8, 41, 42, 35, 31, 4, 4, 37, 38, 9, 20, 10, 31, 24, 34, 44, 21, 16, 19, 24, 4, 22, 22, 47, 8, 28, 26, 32, 22, 28, 56, 44, 16, 61, 38, 3, 25, 52, 35, 73, 55, 8, 42, 25, 21, 62, 61, 7, 89, 5, 74, 89, 57, 33, 60, 13, 75, 95, 66
Offset: 1

Views

Author

G. C. Greubel, Dec 03 2018

Keywords

Examples

			log(5) = 1 + 1/2! + 0/3! + 2/4! + 3/5! + 0/6! + 5/7! + 4/8! + ...
		

Crossrefs

Cf. A016628 (decimal expansion), A016733 (continued fraction).
Cf. A067882 (log(2)), A322334 (log(3)), A068460 (log(7)), A068461 (log(11)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Log(5))] cat [Floor(Factorial(n)*Log(5)) - n*Floor(Factorial((n-1))*Log(5)) : n in [2..80]];
    
  • Mathematica
    With[{b = Log[5]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
  • PARI
    default(realprecision, 250); b = log(5); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
    
  • Sage
    def a(n):
        if (n==1): return floor(log(5))
        else: return expand(floor(factorial(n)*log(5)) - n*floor(factorial(n-1)*log(5)))
    [a(n) for n in (1..80)]

A076594 First occurrence of n as a term in the continued fraction for log(5).

Original entry on oeis.org

1, 20, 6, 11, 19, 12, 24, 26, 32, 66, 112, 45, 68, 318, 64, 52, 58, 41, 101, 62, 1168, 299, 291, 189, 74, 110, 122, 200, 287, 755, 734, 73, 1619, 71, 415, 268, 191, 1700, 27, 17, 547, 468, 3224, 3510, 690, 78, 3064, 258, 487, 1801, 2138, 3911, 155, 811, 1121
Offset: 1

Views

Author

Benoit Cloitre, Oct 20 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Position[ContinuedFraction[Log[5],6000],n,{1},1],{n,60}]] (* Harvey P. Dale, Jun 26 2013 *)
  • PARI
    default(realprecision, 1500); v=contfrac(log(5)); a(n)=if(n<0,0,s=1; while(abs(n-component(v,s))>0,s++); s)
Showing 1-3 of 3 results.