A016751 a(n) = (2*n)^11.
0, 2048, 4194304, 362797056, 8589934592, 100000000000, 743008370688, 4049565169664, 17592186044416, 64268410079232, 204800000000000, 584318301411328, 1521681143169024, 3670344486987776, 8293509467471872, 17714700000000000, 36028797018963968, 70188843638032384
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Crossrefs
Cf. A016763.
Programs
-
Magma
[(2*n)^11: n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
-
Maple
A016751:=n->(2*n)^11: seq(A016751(n), n=0..30); # Wesley Ivan Hurt, Sep 15 2018
-
Mathematica
Table[(2*n)^11, {n,0,30}] (* G. C. Greubel, Sep 15 2018 *)
-
PARI
vector(30, n, n--; (2*n)^11) \\ G. C. Greubel, Sep 15 2018
Formula
G.f.: 2048*x*(1 + 2036*x + 152637*x^2 + 2203488*x^3 + 9738114*x^4 + 15724248*x^5 + 9738114*x^6 + 2203488*x^7 + 152637*x^8 + 2036*x^9 + x^10)/(x-1)^12. - R. J. Mathar, Jul 07 2017
From Amiram Eldar, Oct 11 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(11)/2048.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1023*zeta(11)/2097152. (End)