cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016757 a(n) = (2*n+1)^5.

Original entry on oeis.org

1, 243, 3125, 16807, 59049, 161051, 371293, 759375, 1419857, 2476099, 4084101, 6436343, 9765625, 14348907, 20511149, 28629151, 39135393, 52521875, 69343957, 90224199, 115856201, 147008443, 184528125, 229345007, 282475249, 345025251, 418195493, 503284375, 601692057
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A175571.

Programs

  • Magma
    [(2*n+1)^5: n in [0..30]]; // Vincenzo Librandi, Sep 07 2011
    
  • Mathematica
    Table[(2*n+1)^5, {n,0,30}] (* G. C. Greubel, Sep 15 2018 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,243,3125,16807,59049,161051},30] (* Harvey P. Dale, Sep 04 2022 *)
  • Maxima
    makelist((2*n+1)^5, n, 0, 20); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    vector(30, n, n--; (2*n+1)^5) \\ G. C. Greubel, Sep 15 2018

Formula

G.f.: (1+x)*(x^4 +236*x^3 +1446*x^2 +236*x +1)/(x-1)^6 . - R. J. Mathar, Jul 07 2017
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=0} 1/a(n) = 31*zeta(5)/32.
Sum_{n>=0} (-1)^n/a(n) = 5*Pi^5/1536 (A175571). (End)