A016785 a(n) = (3*n + 1)^9.
1, 262144, 40353607, 1000000000, 10604499373, 68719476736, 322687697779, 1207269217792, 3814697265625, 10578455953408, 26439622160671, 60716992766464, 129961739795077, 262144000000000, 502592611936843, 922190162669056, 1628413597910449, 2779905883635712
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Magma
[(3*n+1)^9 : n in [0..20]]; // Vincenzo Librandi, Sep 28 2011
-
Maple
A016785:=n->(3*n+1)^9; seq(A016785(k), k=0..100); # Wesley Ivan Hurt, Nov 05 2013
-
Mathematica
Table[(3*n+1)^9, {n,0,100}] (* Wesley Ivan Hurt, Nov 05 2013 *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,262144,40353607,1000000000,10604499373,68719476736,322687697779,1207269217792,3814697265625,10578455953408},100] (* Harvey P. Dale, Aug 17 2014 *)
Formula
From Amiram Eldar, Mar 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 1618*Pi^9/(55801305*sqrt(3)) + 9841*zeta(9)/3^9. (End)