cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016791 a(n) = (3*n + 2)^3.

Original entry on oeis.org

8, 125, 512, 1331, 2744, 4913, 8000, 12167, 17576, 24389, 32768, 42875, 54872, 68921, 85184, 103823, 125000, 148877, 175616, 205379, 238328, 274625, 314432, 357911, 405224, 456533, 512000, 571787, 636056, 704969, 778688, 857375, 941192, 1030301, 1124864, 1225043
Offset: 0

Views

Author

Keywords

Comments

Also the perfect cubes with digital root 8. [Proof: perfect cubes are either of the form (3n)^3 or of the form (3n+1)^3 or of the form (3n+2)^3. These subsets have digital root 9, 1 and 8 respectively.] - R. J. Mathar, Oct 02 2008

Examples

			a(4) = (3*4 + 2)^3 = 2744.
a(8) = (3*8 + 2)^3 = 17576.
		

References

  • Amarnath Murthy, Fabricating a perfect cube with a given valid digit sum (to be published)

Crossrefs

Programs

  • Mathematica
    (3*Range[0,40]+2)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{8,125,512,1331},40] (* Harvey P. Dale, Feb 20 2013 *)
  • PARI
    a(n) = { (3*n + 2)^3 } \\ Harry J. Smith, Jul 18 2009

Formula

a(n) = A016789(n)^3. - Nathaniel Johnston, May 04 2011
G.f.: (8 + 93*x + 60*x^2 + x^3)/(1 - 4*x + 6*x^2 - 4*x^3 + x^4). - Colin Barker, Jan 02 2012
a(0)=8, a(1)=125, a(2)=512, a(3)=1331, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Feb 20 2013
Sum_{n>=0} 1/a(n) = -2*Pi^3 / (81*sqrt(3)) + 13*zeta(3)/27. - Amiram Eldar, Oct 02 2020

Extensions

More terms from Harry J. Smith, Jul 18 2009
First digital root in proof in comment line corrected. - Ant King, May 01 2013