A016791 a(n) = (3*n + 2)^3.
8, 125, 512, 1331, 2744, 4913, 8000, 12167, 17576, 24389, 32768, 42875, 54872, 68921, 85184, 103823, 125000, 148877, 175616, 205379, 238328, 274625, 314432, 357911, 405224, 456533, 512000, 571787, 636056, 704969, 778688, 857375, 941192, 1030301, 1124864, 1225043
Offset: 0
Examples
a(4) = (3*4 + 2)^3 = 2744. a(8) = (3*8 + 2)^3 = 17576.
References
- Amarnath Murthy, Fabricating a perfect cube with a given valid digit sum (to be published)
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
(3*Range[0,40]+2)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{8,125,512,1331},40] (* Harvey P. Dale, Feb 20 2013 *)
-
PARI
a(n) = { (3*n + 2)^3 } \\ Harry J. Smith, Jul 18 2009
Formula
a(n) = A016789(n)^3. - Nathaniel Johnston, May 04 2011
G.f.: (8 + 93*x + 60*x^2 + x^3)/(1 - 4*x + 6*x^2 - 4*x^3 + x^4). - Colin Barker, Jan 02 2012
a(0)=8, a(1)=125, a(2)=512, a(3)=1331, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Feb 20 2013
Sum_{n>=0} 1/a(n) = -2*Pi^3 / (81*sqrt(3)) + 13*zeta(3)/27. - Amiram Eldar, Oct 02 2020
Extensions
More terms from Harry J. Smith, Jul 18 2009
First digital root in proof in comment line corrected. - Ant King, May 01 2013
Comments