cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A016965 a(n) = (6*n + 4)^9.

Original entry on oeis.org

262144, 1000000000, 68719476736, 1207269217792, 10578455953408, 60716992766464, 262144000000000, 922190162669056, 2779905883635712, 7427658739644928, 18014398509481984, 40353607000000000, 84590643846578176, 167619550409708032, 316478381828866048, 572994802228616704
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+4)^9: n in [0..20]]; // Vincenzo Librandi, May 07 2011
  • Mathematica
    (6*Range[0,20]+4)^9 (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{262144,1000000000,68719476736,1207269217792,10578455953408,60716992766464,262144000000000,922190162669056,2779905883635712,7427658739644928},20] (* Harvey P. Dale, Mar 04 2016 *)

Formula

From Amiram Eldar, Mar 31 2022: (Start)
a(n) = A016957(n)^9 = A016958(n)^3.
a(n) = 2^9*A016797(n).
Sum_{n>=0} 1/a(n) = 9841*zeta(9)/10077696 - 809*Pi^9/(14285134080*sqrt(3)). (End)

A016799 a(n) = (3*n + 2)^11.

Original entry on oeis.org

2048, 48828125, 8589934592, 285311670611, 4049565169664, 34271896307633, 204800000000000, 952809757913927, 3670344486987776, 12200509765705829, 36028797018963968, 96549157373046875, 238572050223552512, 550329031716248441, 1196683881290399744, 2472159215084012303
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016789(n)^11.
Sum_{n>=0} 1/a(n) = 88573*zeta(11)/177147 - 7388*Pi^11/(2511058725*sqrt(3)). (End)

A016800 a(n) = (3*n + 2)^12.

Original entry on oeis.org

4096, 244140625, 68719476736, 3138428376721, 56693912375296, 582622237229761, 4096000000000000, 21914624432020321, 95428956661682176, 353814783205469041, 1152921504606846976, 3379220508056640625, 9065737908494995456, 22563490300366186081, 52654090776777588736
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016789(n)^12 = A016790(n)^6 = A016791(n)^4 = A016792(n)^3 = A016794(n)62.
Sum_{n>=0} 1/a(n) = PolyGamma(11, 2/3)/21213424108800. (End)
Showing 1-3 of 3 results.