cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377558 Decimal expansion of Pi^3/64 + 7*zeta(3)/16.

Original entry on oeis.org

1, 0, 1, 0, 3, 7, 2, 9, 6, 8, 2, 6, 2, 0, 0, 7, 1, 9, 0, 1, 0, 4, 2, 0, 2, 8, 6, 8, 5, 8, 4, 7, 1, 8, 6, 7, 0, 9, 9, 4, 4, 5, 1, 6, 3, 6, 7, 4, 0, 9, 2, 3, 0, 6, 8, 5, 0, 5, 1, 2, 7, 2, 1, 3, 3, 3, 4, 0, 2, 9, 1, 3, 5, 6, 1, 6, 9, 1, 3, 6, 3, 3, 7, 9, 3, 5, 5, 4, 1, 4, 8, 3, 3, 8, 5, 0, 4, 2, 7, 2
Offset: 1

Views

Author

Stefano Spezia, Nov 01 2024

Keywords

Examples

			1.01037296826200719010420286858471867099445163674...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 42.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^3/64+7Zeta[3]/16,10,100][[1]]

Formula

Equals Sum_{k>=0} 1/(4*k + 1)^3 (see Finch).
Equals -psi''(1/4)/128 = -(psi''(1/8) + psi''(5/8))/1024 (see Shamos).
Equals hypergeom([1/4, 1/4, 1/4, 1], [5/4, 5/4, 5/4], 1). - R. J. Mathar, Jul 14 2025

A017091 a(n) = (8*n + 2)^3.

Original entry on oeis.org

8, 1000, 5832, 17576, 39304, 74088, 125000, 195112, 287496, 405224, 551368, 729000, 941192, 1191016, 1481544, 1815848, 2197000, 2628072, 3112136, 3652264, 4251528, 4913000, 5639752, 6434856, 7301384, 8242408, 9261000, 10360232, 11543176, 12812904, 14172488, 15625000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A002117, A016815, A017089 (8n+2), A000578 (n^3).

Programs

  • Magma
    [(8*n+2)^3: n in [0..35]]; // Vincenzo Librandi, Jul 12 2011
  • Mathematica
    (8*Range[0,30]+2)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{8,1000,5832,17576},30] (* Harvey P. Dale, Dec 30 2019 *)

Formula

G.f.: 8*(1 + 121*x + 235*x^2 + 27*x^3)/(x-1)^4. - R. J. Mathar, Jul 14 2016
From Amiram Eldar, Apr 24 2023: (Start)
a(n) = A017089(n)^3.
a(n) = 2^3*A016815(n).
Sum_{n>=0} 1/a(n) = Pi^3/512 + 7*zeta(3)/128. (End)
Showing 1-2 of 2 results.