A016828 a(n) = (4*n+2)^4.
16, 1296, 10000, 38416, 104976, 234256, 456976, 810000, 1336336, 2085136, 3111696, 4477456, 6250000, 8503056, 11316496, 14776336, 18974736, 24010000, 29986576, 37015056, 45212176, 54700816, 65610000, 78074896, 92236816
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1)
Programs
-
Magma
[(4*n+2)^4: n in [0..40]]; // Vincenzo Librandi, Sep 07 2011
-
Mathematica
Table[(4n+2)^4,{n,0,100}] (* Mohammad K. Azarian, Jun 21 2016 *)
Formula
a(n) = 16*A016756(n). O.g.f.: -16*(1+76*x+230*x^2+76*x^3+x^4)/(-1+x)^5. - R. J. Mathar, Mar 31 2008
From Ilya Gutkovskiy, Jun 21 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Sum_{n>=0} 1/a(n) = Pi^4/1536. (End)
Extensions
More terms from R. J. Mathar, Mar 31 2008