A016886 a(n) = (5*n + 3)^2.
9, 64, 169, 324, 529, 784, 1089, 1444, 1849, 2304, 2809, 3364, 3969, 4624, 5329, 6084, 6889, 7744, 8649, 9604, 10609, 11664, 12769, 13924, 15129, 16384, 17689, 19044, 20449, 21904, 23409, 24964, 26569, 28224, 29929, 31684, 33489, 35344, 37249, 39204, 41209
Offset: 0
Examples
a(0) = (5*0 + 3)^2 = 9.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Eric Weisstein's MathWorld, Polygamma Function.
- Wikipedia, Polygamma Function.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[(5*n + 3)^2 : n in [0..50]]; // Wesley Ivan Hurt, Dec 02 2021
-
Mathematica
(5*Range[0,40]+3)^2 (* or *) LinearRecurrence[{3,-3,1},{9,64,169},40] (* Harvey P. Dale, Dec 09 2016 *) CoefficientList[Series[(9 + x) (1 + 4 x)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, Mar 29 2017 *)
-
PARI
Vec((9 + x)*(1 + 4*x) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Mar 29 2017
Formula
From Colin Barker, Mar 29 2017: (Start)
G.f.: (9 + x)*(1 + 4*x) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
(End)
Sum_{n>=0} 1/a(n) = polygamma(1, 3/5)/25. - Amiram Eldar, Oct 02 2020