cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016898 a(n) = (5*n + 4)^2.

Original entry on oeis.org

16, 81, 196, 361, 576, 841, 1156, 1521, 1936, 2401, 2916, 3481, 4096, 4761, 5476, 6241, 7056, 7921, 8836, 9801, 10816, 11881, 12996, 14161, 15376, 16641, 17956, 19321, 20736, 22201, 23716, 25281, 26896, 28561, 30276, 32041, 33856, 35721, 37636, 39601, 41616
Offset: 0

Views

Author

Keywords

Comments

If Y is a fixed 2-subset of a (5n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
Interleaving of A017318 and A017378. - Michel Marcus, Aug 26 2015

Examples

			a(0) = (5*0 + 4)^2 = 16.
		

Crossrefs

Programs

  • Magma
    [(5*n+4)^2: n in [0..70]]; // Vincenzo Librandi, May 02 2011
    
  • Mathematica
    Table[(5*n + 4)^2, {n, 0, 25}] (* Amiram Eldar, Oct 02 2020 *)
    LinearRecurrence[{3,-3,1},{16,81,196},50] (* Harvey P. Dale, Jul 30 2023 *)
  • PARI
    Vec((16 + 33*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, Mar 30 2017

Formula

From Colin Barker, Mar 30 2017: (Start)
G.f.: (16 + 33*x + x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
(End)
Sum_{n>=0} 1/a(n) = polygamma(1, 4/5)/25. - Amiram Eldar, Oct 02 2020