cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016923 a(n) = (6*n + 1)^3.

Original entry on oeis.org

1, 343, 2197, 6859, 15625, 29791, 50653, 79507, 117649, 166375, 226981, 300763, 389017, 493039, 614125, 753571, 912673, 1092727, 1295029, 1520875, 1771561, 2048383, 2352637, 2685619, 3048625, 3442951, 3869893, 4330747, 4826809, 5359375, 5929741, 6539203, 7189057
Offset: 0

Views

Author

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.6.3.

Crossrefs

Programs

  • Magma
    [(6*n+1)^3: n in [0..60]]; // Vincenzo Librandi, May 04 2011
  • Mathematica
    a[n_]:=(6*n + 1)^3; Array[a, 60, 0] (* or *)
    LinearRecurrence[{4, -6, 4, -1}, {1, 343, 2197, 6859}, 60] (* or *)
    CoefficientList[Series[(1 + 339 x + 831 x^2 + 125 x^3)/(-1 + x)^4, {x, 0, 60}], x] (* Stefano Spezia, Sep 03 2018 *)

Formula

Sum_{n>=0} 1/a(n) = Pi^3/(36*sqrt(3)) + 91*zeta(3)/216.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Dec 28 2023
From Stefano Spezia, Nov 01 2024: (Start)
E.g.f.: exp(x)*(1 + 342*x + 756*x^2 + 216*x^3).
a(n) = A000578(A016921(n)). (End)