A016941 a(n) = (6*n + 2)^9.
512, 134217728, 20661046784, 512000000000, 5429503678976, 35184372088832, 165216101262848, 618121839509504, 1953125000000000, 5416169448144896, 13537086546263552, 31087100296429568, 66540410775079424, 134217728000000000, 257327417311663616, 472161363286556672
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Magma
[(6*n+2)^9: n in [0..25]]; // Vincenzo Librandi, May 05 2011
-
Mathematica
(6*Range[0,20]+2)^9 (* or *) LinearRecurrence[ {10,-45,120,-210,252,-210,120,-45,10,-1},{512,134217728,20661046784,512000000000,5429503678976,35184372088832,165216101262848,618121839509504,1953125000000000,5416169448144896},20] (* Harvey P. Dale, Sep 21 2013 *)
Formula
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10). - Harvey P. Dale, Sep 21 2013
From Amiram Eldar, Mar 29 2022: (Start)
a(n) = 2^9*A016785(n).
Sum_{n>=0} 1/a(n) = 809*Pi^9/(14285134080*sqrt(3)) + 9841*zeta(9)/10077696. (End)