cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A016949 a(n) = (6*n + 3)^5.

Original entry on oeis.org

243, 59049, 759375, 4084101, 14348907, 39135393, 90224199, 184528125, 345025251, 601692057, 992436543, 1564031349, 2373046875, 3486784401, 4984209207, 6956883693, 9509900499, 12762815625, 16850581551, 21924480357, 28153056843, 35723051649, 44840334375, 55730836701
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A000584.

Programs

  • Magma
    [(6*n+3)^5: n in [0..50]]; // Vincenzo Librandi, May 05 2011
  • Mathematica
    a[n_] := (6*n + 3)^5; Array[a, 50, 0] (* Amiram Eldar, Mar 30 2022 *)

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^5.
a(n) = 3^5*A016757(n).
Sum_{n>=0} 1/a(n) = 31*zeta(5)/7776.
Sum_{n>=0} (-1)^n/a(n) = 5*Pi^5/373248. (End)

A016950 a(n) = (6*n + 3)^6.

Original entry on oeis.org

729, 531441, 11390625, 85766121, 387420489, 1291467969, 3518743761, 8303765625, 17596287801, 34296447249, 62523502209, 107918163081, 177978515625, 282429536481, 433626201009, 646990183449, 941480149401, 1340095640625, 1870414552161, 2565164201769, 3462825991689
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^6 = A016946(n)^3 = A016947(n)^2.
a(n) = 3^6*A016758(n).
Sum_{n>=0} 1/a(n) = Pi^6/699840. (End)

A016951 a(n) = (6*n + 3)^7.

Original entry on oeis.org

2187, 4782969, 170859375, 1801088541, 10460353203, 42618442977, 137231006679, 373669453125, 897410677851, 1954897493193, 3938980639167, 7446353252589, 13348388671875, 22876792454961, 37725479487783, 60170087060757, 93206534790699, 140710042265625, 207616015289871
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+3)^7: n in [0..40]]; // Vincenzo Librandi, May 05 2011
  • Mathematica
    a[n_] := (6*n + 3)^7; Array[a, 50, 0] (* Amiram Eldar, Mar 30 2022 *)

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^7.
a(n) = 3^7*A016759(n).
Sum_{n>=0} 1/a(n) = 127*zeta(7)/279936.
Sum_{n>=0} (-1)^n/a(n) = 61*Pi^7/403107840. (End)

A016952 a(n) = (6*n + 3)^8.

Original entry on oeis.org

6561, 43046721, 2562890625, 37822859361, 282429536481, 1406408618241, 5352009260481, 16815125390625, 45767944570401, 111429157112001, 248155780267521, 513798374428641, 1001129150390625, 1853020188851841, 3282116715437121, 5595818096650401, 9227446944279201
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+3)^8: n in [0..40]]; // Vincenzo Librandi, May 05 2011
  • Mathematica
    a[n_] := (6*n + 3)^8; Array[a, 50, 0] (* Amiram Eldar, Mar 30 2022 *)

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^8 = A016946(n)^4 = A016948(n)^2.
a(n) = 3^8*A016760(n).
Sum_{n>=0} 1/a(n) = 17*Pi^8/1058158080. (End)

A016953 a(n) = (6*n + 3)^9.

Original entry on oeis.org

19683, 387420489, 38443359375, 794280046581, 7625597484987, 46411484401953, 208728361158759, 756680642578125, 2334165173090451, 6351461955384057, 15633814156853823, 35452087835576229, 75084686279296875, 150094635296999121, 285544154243029527, 520411082988487293
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10). - Harvey P. Dale, Jan 19 2012
From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^9 = A016947(n)^3.
a(n) = 3^9*A016761(n).
Sum_{n>=0} 1/a(n) = 511*zeta(9)/10077696.
Sum_{n>=0} (-1)^n/a(n) = 277*Pi^9/162533081088. (End)

A016954 a(n) = (6n+3)^10.

Original entry on oeis.org

59049, 3486784401, 576650390625, 16679880978201, 205891132094649, 1531578985264449, 8140406085191601, 34050628916015625, 119042423827613001, 362033331456891249, 984930291881790849, 2446194060654759801, 5631351470947265625, 12157665459056928801
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Wesley Ivan Hurt, Aug 22 2016: (Start)
G.f.: 59049*(1 + 59038*x + 9116141*x^2 + 178300904*x^3 + 906923282*x^4 + 1527092468*x^5 + 906923282*x^6 + 178300904*x^7 + 9116141*x^8 + 59038*x^9 + x^10)/(1-x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>10.
a(n) = A008454(A016945(n)). (End)
From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016946(n)^5 = A016949(n)^2.
a(n) = 3^10*A016762(n).
Sum_{n>=0} 1/a(n) = 31*Pi^10/171421608960. (End)

A016955 a(n) = (6*n + 3)^11.

Original entry on oeis.org

177147, 31381059609, 8649755859375, 350277500542221, 5559060566555523, 50542106513726817, 317475837322472439, 1532278301220703125, 6071163615208263051, 20635899893042801193, 62050608388552823487, 168787390185178426269, 422351360321044921875, 984770902183611232881
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+3)^11: n in [0..20]]; // Vincenzo Librandi, May 06 2011
  • Mathematica
    a[n_] := (6*n + 3)^11; Array[a, 50, 0] (* Amiram Eldar, Mar 30 2022 *)

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^11.
a(n) = 3^11*A016763(n).
Sum_{n>=0} 1/a(n) = 2047*zeta(11)/362797056.
Sum_{n>=0} (-1)^n/a(n) = 50521*Pi^11/2633035913625600. (End)

A016956 a(n) = (6*n + 3)^12.

Original entry on oeis.org

531441, 282429536481, 129746337890625, 7355827511386641, 150094635296999121, 1667889514952984961, 12381557655576425121, 68952523554931640625, 309629344375621415601, 1176246293903439668001, 3909188328478827879681, 11646329922777311412561, 31676352024078369140625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Mar 31 2022: (Start)
a(n) = A016945(n)^12 = A016946(n)^6 = A016947(n)^4 = A016948(n)^3 = A016950(n)^2..
a(n) = 3^12*A016764(n).
Sum_{n>=0} 1/a(n) = 691*Pi^12/339414785740800. (End)
Showing 1-8 of 8 results.