cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A016962 a(n) = (6*n + 4)^6.

Original entry on oeis.org

4096, 1000000, 16777216, 113379904, 481890304, 1544804416, 4096000000, 9474296896, 19770609664, 38068692544, 68719476736, 117649000000, 192699928576, 304006671424, 464404086784, 689869781056, 1000000000000, 1418519112256, 1973822685184, 2699554153024, 3635215077376
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+4)^6: n in [0..25]]; // Vincenzo Librandi, May 06 2011
  • Mathematica
    (6Range[0,20]+4)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{4096,1000000,16777216,113379904,481890304,1544804416,4096000000},20] (* Harvey P. Dale, Aug 08 2019 *)

Formula

From Amiram Eldar, Mar 31 2022: (Start)
a(n) = A016957(n)^6 = A016958(n)^3 = A016959(n)^2.
a(n) = 64*A016794(n).
Sum_{n>=0} 1/a(n) = PolyGamma(5, 2/3)/5598720. (End)

A016963 a(n) = (6*n + 4)^7.

Original entry on oeis.org

16384, 10000000, 268435456, 2494357888, 13492928512, 52523350144, 163840000000, 435817657216, 1028071702528, 2207984167552, 4398046511104, 8235430000000, 14645194571776, 24928547056768, 40867559636992, 64847759419264, 100000000000000, 150363025899136, 221068140740608
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+4)^7: n in [0..20]]; // Vincenzo Librandi, May 07 2011
  • Mathematica
    (6*Range[0,20]+4)^7 (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{16384,10000000,268435456,2494357888,13492928512,52523350144,163840000000,435817657216},20] (* Harvey P. Dale, Mar 03 2018 *)

Formula

From Amiram Eldar, Mar 31 2022: (Start)
a(n) = A016957(n)^7.
a(n) = 2^7*A016795(n).
Sum_{n>=0} 1/a(n) = 1093*zeta(7)/279936 - 7*Pi^7/(3149280*sqrt(3)). (End)

A016964 a(n) = (6*n + 4)^8.

Original entry on oeis.org

65536, 100000000, 4294967296, 54875873536, 377801998336, 1785793904896, 6553600000000, 20047612231936, 53459728531456, 128063081718016, 281474976710656, 576480100000000, 1113034787454976, 2044140858654976, 3596345248055296, 6095689385410816, 10000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+4)^8: n in [0..20]]; // Vincenzo Librandi, May 07 2011
  • Mathematica
    (6*Range[0,20]+4)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{65536,100000000,4294967296,54875873536,377801998336,1785793904896,6553600000000,20047612231936,53459728531456},20] (* Harvey P. Dale, Dec 26 2018 *)

Formula

From Amiram Eldar, Mar 31 2022: (Start)
a(n) = A016957(n)^8 = A016958(n)^4 = A016960(n)^2.
a(n) = 2^8*A016796(n).
Sum_{n>=0} 1/a(n) = PolyGamma(7, 2/3)/8465264640. (End)

A016965 a(n) = (6*n + 4)^9.

Original entry on oeis.org

262144, 1000000000, 68719476736, 1207269217792, 10578455953408, 60716992766464, 262144000000000, 922190162669056, 2779905883635712, 7427658739644928, 18014398509481984, 40353607000000000, 84590643846578176, 167619550409708032, 316478381828866048, 572994802228616704
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+4)^9: n in [0..20]]; // Vincenzo Librandi, May 07 2011
  • Mathematica
    (6*Range[0,20]+4)^9 (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{262144,1000000000,68719476736,1207269217792,10578455953408,60716992766464,262144000000000,922190162669056,2779905883635712,7427658739644928},20] (* Harvey P. Dale, Mar 04 2016 *)

Formula

From Amiram Eldar, Mar 31 2022: (Start)
a(n) = A016957(n)^9 = A016958(n)^3.
a(n) = 2^9*A016797(n).
Sum_{n>=0} 1/a(n) = 9841*zeta(9)/10077696 - 809*Pi^9/(14285134080*sqrt(3)). (End)

A016966 a(n) = (6*n + 4)^10.

Original entry on oeis.org

1048576, 10000000000, 1099511627776, 26559922791424, 296196766695424, 2064377754059776, 10485760000000000, 42420747482776576, 144555105949057024, 430804206899405824, 1152921504606846976, 2824752490000000000, 6428888932339941376, 13744803133596058624
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Mar 31 2022: (Start)
a(n) = A016957(n)^10 = A016958(n)^5 = A016961(n)^2.
a(n) = 2^10*A016798(n).
Sum_{n>=0} 1/a(n) = PolyGamma(9, 2/3)/21941965946880. (End)

A016967 a(n) = (6*n + 4)^11.

Original entry on oeis.org

4194304, 100000000000, 17592186044416, 584318301411328, 8293509467471872, 70188843638032384, 419430400000000000, 1951354384207722496, 7516865509350965248, 24986644000165537792, 73786976294838206464, 197732674300000000000, 488595558857835544576, 1127073856954876807168
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016957(n)^11.
a(n) = 2^11*A016799(n).
Sum_{n>=0} 1/a(n) = 88573*zeta(11)/362797056 - 1847*Pi^11/(1285662067200*sqrt(3)). (End)

A016968 a(n) = (6*n + 4)^12.

Original entry on oeis.org

16777216, 1000000000000, 281474976710656, 12855002631049216, 232218265089212416, 2386420683693101056, 16777216000000000000, 89762301673555234816, 390877006486250192896, 1449225352009601191936, 4722366482869645213696, 13841287201000000000000, 37133262473195501387776
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Apr 01 2022: (Start)
a(n) = A016957(n)^12 = A016958(n)^6 = A016959(n)^4 = A016960(n)^3 = A016962(n)^2.
a(n) = 2^12*A016800(n).
Sum_{n>=0} 1/a(n) = PolyGamma(11, 2/3)/86890185149644800. (End)
Showing 1-7 of 7 results.