cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A174994 Repeat (8*n+4)^2.

Original entry on oeis.org

16, 16, 144, 144, 400, 400, 784, 784, 1296, 1296, 1936, 1936, 2704, 2704, 3600, 3600, 4624, 4624, 5776, 5776, 7056, 7056, 8464, 8464, 10000, 10000, 11664, 11664, 13456, 13456, 15376, 15376, 17424, 17424, 19600, 19600, 21904, 21904, 24336, 24336, 26896, 26896, 29584, 29584, 32400, 32400, 35344, 35344
Offset: 0

Views

Author

Paul Curtz, Dec 02 2010

Keywords

Crossrefs

Programs

  • Mathematica
    (8*Floor[Range[0, 50]/2] + 4)^2 (* Wesley Ivan Hurt, Jul 23 2025 *)
  • PARI
    Vec((-16-96*x^2-16*x^4)/((1+x)^2*(x-1)^3) + O(x^100)) \\ Colin Barker, Jan 26 2016

Formula

a(n) = A174683(A043547(n+1)).
a(2n) = a(2n+1) = A017114(n).
From R. J. Mathar, Dec 02 2010: (Start)
a(n) = a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: ( -16-96*x^2-16*x^4 ) / ( (1+x)^2*(x-1)^3 ). (End)
From Colin Barker, Jan 26 2016: (Start)
a(n) = 8*(2*n^2+2*(-1)^n*n+2*n+(-1)^n+1).
a(n) = 16*n^2+32*n+16 for n even.
a(n) = 16*n^2 for n odd. (End)
a(n) = (8*floor(n/2)+4)^2. - Bruno Berselli, Jan 26 2016
Showing 1-1 of 1 results.