A017139 a(n) = (8*n + 6)^3.
216, 2744, 10648, 27000, 54872, 97336, 157464, 238328, 343000, 474552, 636056, 830584, 1061208, 1331000, 1643032, 2000376, 2406104, 2863288, 3375000, 3944312, 4574296, 5268024, 6028568, 6859000, 7762392, 8741816, 9800344, 10941048, 12167000, 13481272, 14886936
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Quadratic Residue.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(8*n+6)^3: n in [0..35]]; // Vincenzo Librandi, Jul 22 2011
-
Mathematica
Table[(8*n+6)^3,{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2010 *) LinearRecurrence[{4,-6,4,-1},{216,2744,10648,27000},30] (* Harvey P. Dale, Dec 11 2012 *)
Formula
From R. J. Mathar, Mar 22 2010: (Start)
G.f.: 8*(27 + 235*x + 121*x^2 + x^3)/(x-1)^4.
a(n) = 8*A016839(n). (End)
a(0)=216, a(1)=2744, a(2)=10648, a(3)=27000, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Dec 11 2012
Sum_{n>=0} 1/a(n) = 7*zeta(3)/128 - Pi^2/512. - Amiram Eldar, Apr 26 2023
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, Mar 17 2010
Comments