A017171 a(n) = (9*n)^11.
0, 31381059609, 64268410079232, 5559060566555523, 131621703842267136, 1532278301220703125, 11384956040305711104, 62050608388552823487, 269561249468963094528, 984770902183611232881, 3138105960900000000000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1).
Programs
-
Magma
[(9*n)^11: n in [0..15]]; // Vincenzo Librandi, Jul 22 2011
-
Mathematica
(9*Range[0,20])^11 (* Harvey P. Dale, Apr 06 2019 *) CoefficientList[Series[31381059609*x*(1 + 2036*x + 152637*x^2 + 2203488*x^3 + 9738114*x^4 + 15724248*x^5 + 9738114*x^6 + 2203488*x^7 + 152637*x^8 + 2036*x^9 + x^10)/(-1 + x)^12, {x, 0, 15}], x] (* Wesley Ivan Hurt, Jul 17 2025 *)
Formula
a(n) = 31381059609*A008455(n). - R. J. Mathar, Jul 07 2017
From Wesley Ivan Hurt, Jul 17 2025: (Start)
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12).
G.f.: 31381059609*x*(1 + 2036*x + 152637*x^2 + 2203488*x^3 + 9738114*x^4 + 15724248*x^5 + 9738114*x^6 + 2203488*x^7 + 152637*x^8 + 2036*x^9 + x^10)/(-1 + x)^12.
Comments