A017222 a(n) = (9*n + 5)^2.
25, 196, 529, 1024, 1681, 2500, 3481, 4624, 5929, 7396, 9025, 10816, 12769, 14884, 17161, 19600, 22201, 24964, 27889, 30976, 34225, 37636, 41209, 44944, 48841, 52900, 57121, 61504, 66049, 70756
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[(9*n+5)^2: n in [0..35]]; // Vincenzo Librandi, Jul 24 2011
-
Mathematica
(9Range[0,30]+5)^2 (* or *) LinearRecurrence[{3,-3,1},{25,196,529},30] (* Harvey P. Dale, May 22 2012 *)
-
PARI
a(n)=(9*n+5)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
SageMath
[(9*n+5)^2 for n in range(41)] # G. C. Greubel, Dec 29 2022
Formula
a(n) = A017221(n)^2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 22 2012
G.f.: (25 + 121*x + 16*x^2)/(1-x)^3. - R. J. Mathar, Mar 20 2018
From G. C. Greubel, Dec 29 2022: (Start)
a(2*n+1) = 4*A017246(n).
a(n) = a(n-1) + 9*(18*n + 1).
E.g.f.: (25 + 171*x + 81*x^2)*exp(x). (End)