A017378 a(n) = (10*n + 9)^2.
81, 361, 841, 1521, 2401, 3481, 4761, 6241, 7921, 9801, 11881, 14161, 16641, 19321, 22201, 25281, 28561, 32041, 35721, 39601, 43681, 47961, 52441, 57121, 62001, 67081, 72361, 77841, 83521, 89401, 95481, 101761, 108241, 114921, 121801, 128881, 136161, 143641
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A017377.
Programs
-
Magma
[(10*n+9)^2: n in [0..40]]; // Vincenzo Librandi, Aug 31 2011
-
Maple
A017378:=n->(10*n+9)^2: seq(A017378(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2017
-
Mathematica
Table[(10 n + 9)^2, {n, 0, 37}] (* or *) LinearRecurrence[{3, -3, 1}, {81, 361, 841}, 38] (* or *) CoefficientList[Series[(81 + 118 x + x^2)/(1 - x)^3, {x, 0, 37}], x] (* Michael De Vlieger, Mar 30 2017 *)
-
PARI
a(n) = (10*n+9)^2; \\ Michel Marcus, Aug 26 2015
-
PARI
Vec((81 + 118*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, Mar 30 2017
Formula
From Colin Barker, Mar 30 2017: (Start)
G.f.: (81 + 118*x + x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
(End)