A017444 a(n) = (11*n + 4)^8.
65536, 2562890625, 208827064576, 3512479453921, 28179280429056, 146830437604321, 576480100000000, 1853020188851841, 5132188731375616, 12667700813876161, 28525864220672256, 59604644775390625, 117033789351264256, 218041257467152161, 388379855336079616
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+4)^8); # G. C. Greubel, Sep 18 2019
-
Magma
[(11*n+4)^8: n in [0..20]]; // G. C. Greubel, Sep 18 2019
-
Maple
seq((11*n+4)^8, n=0..20); # G. C. Greubel, Sep 18 2019
-
Mathematica
(11*Range[0,20]+4)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36, -9,1}, {65536,2562890625,208827064576,3512479453921, 28179280429056, 146830437604321,576480100000000,1853020188851841,5132188731375616}, 20] (* Harvey P. Dale, Sep 21 2016 *)
-
PARI
vector(20, n, (11*n-7)^8) \\ G. C. Greubel, Sep 18 2019
-
Sage
[(11*n+4)^8 for n in (0..20)] # G. C. Greubel, Sep 18 2019
Formula
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (65536 +2562300801*x +185763408247*x^2 +1725294430213*x^3 +3869465113539*x^4 +2447616620803*x^5 +401274300613*x^6 +10968077367*x^7 +5764801*x^8)/(1-x)^9.
E.g.f.: (65536 +2562825089*x +101850674431*x^2 +482281144422*x^3 +640503062661*x^4 +324861447834*x^5 +70908500586*x^6 +6625638140*x^7 +214358881*x^8)*exp(x). (End)
Extensions
Terms a(12) onward added by G. C. Greubel, Sep 18 2019