A017446 a(n) = (11*n + 4)^10.
1048576, 576650390625, 141167095653376, 4808584372417849, 64925062108545024, 511116753300641401, 2824752490000000000, 12157665459056928801, 43438845422363213824, 134391637934412192049
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+4)^10); # G. C. Greubel, Sep 18 2019
-
Magma
[(11*n+4)^10: n in [0..20]]; // G. C. Greubel, Sep 18 2019
-
Maple
seq((11*n+4)^10, n=0..20); # G. C. Greubel, Sep 18 2019
-
Mathematica
(11*Range[0,20]+4)^10 (* Harvey P. Dale, Aug 30 2015 *)
-
PARI
vector(20, n, (11*n-7)^10) \\ G. C. Greubel, Sep 18 2019
-
Sage
[(11*n+4)^10 for n in (0..20)] # G. C. Greubel, Sep 18 2019
Formula
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (1048576 +576638856289*x +134823999028181*x^2 +3287461918700048*x^3 +19699677304461320*x^4 +38310933951284930*x^5 +26248927783563266*x^6 + 6054309522746024*x^7 +381447629946032*x^8 +3567359998885*x^9 +282475249* x^10)/(1-x)^11.
E.g.f.: (1048576 +576649342049*x +70006897960351*x^2 +731135505930170*x^3 +1938975858011665*x^4 +1943070823137213*x^5 +885930917929827*x^6 + 200558066497800*x^7 +23002851520110*x^8 +1261502014685*x^9 +25937424601* x^10)*exp(x). (End)