A017450 a(n) = (11*n + 5)^2.
25, 256, 729, 1444, 2401, 3600, 5041, 6724, 8649, 10816, 13225, 15876, 18769, 21904, 25281, 28900, 32761, 36864, 41209, 45796, 50625, 55696, 61009, 66564, 72361, 78400, 84681, 91204, 97969, 104976, 112225, 119716, 127449, 135424, 143641, 152100, 160801, 169744, 178929, 188356, 198025
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..45], n-> (11*n+5)^2); # G. C. Greubel, Sep 18 2019
-
Magma
[(11*n+5)^2: n in [0..45]]; // Vincenzo Librandi, Sep 03 2011
-
Maple
seq((11*n+5)^2, n=0..45); # G. C. Greubel, Sep 18 2019
-
Mathematica
(11Range[0,45]+5)^2 (* or *) LinearRecurrence[{3,-3,1},{25,256,729},45] (* Harvey P. Dale, Dec 08 2013 *)
-
PARI
a(n)=(11*n+5)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[(11*n+5)^2 for n in (0..45)] # G. C. Greubel, Sep 18 2019
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=25, a(1)=256, a(2)=729. - Harvey P. Dale, Dec 08 2013
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (25 +181*x +36*x^2)/(1-x)^3.
E.g.f.: (25 +231*x +121*x^2)*exp(x). (End)