A017452 a(n) = (11*n + 5)^4.
625, 65536, 531441, 2085136, 5764801, 12960000, 25411681, 45212176, 74805201, 116985856, 174900625, 252047376, 352275361, 479785216, 639128961, 835210000, 1073283121, 1358954496, 1698181681, 2097273616, 2562890625, 3102044416, 3722098081, 4430766096, 5236114321, 6146560000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
GAP
List([0..30], n-> (11*n+5)^4); # G. C. Greubel, Sep 18 2019
-
Magma
[(11*n+5)^4: n in [0..30]]; // Vincenzo Librandi, Sep 03 2011
-
Maple
seq((11*n+5)^4, n=0..30); # G. C. Greubel, Sep 18 2019
-
Mathematica
(11*Range[30] -6)^3 (* G. C. Greubel, Sep 18 2019 *) LinearRecurrence[{5,-10,10,-5,1},{625,65536,531441,2085136,5764801},30] (* Harvey P. Dale, Nov 29 2022 *)
-
PARI
vector(30, n, (11*n-6)^4) \\ G. C. Greubel, Sep 18 2019
-
Sage
[(11*n+5)^4 for n in (0..30)] # G. C. Greubel, Sep 18 2019
Formula
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: (625 +62411*x +210011*x^2 +77041*x^3 +1296*x^4)/(1-x)^5.
E.g.f.: (625 +64911*x +200497*x^2 +114466*x^3 +14641*x^4)*exp(x). (End)