A017456 a(n) = (11*n + 5)^8.
390625, 4294967296, 282429536481, 4347792138496, 33232930569601, 167961600000000, 645753531245761, 2044140858654976, 5595818096650401, 13685690504052736, 30590228625390625, 63527879748485376, 124097929967680321, 230193853492166656, 408485828788939521
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+5)^8); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+5)^8: n in [0..20]]; // Vincenzo Librandi, Sep 03 2011
-
Maple
seq((11*n+5)^8, n=0..20); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11Range[0,20]+5)^8 (* Harvey P. Dale, Apr 23 2011 *)
-
PARI
vector(20, n, (11*n-6)^8) \\ G. C. Greubel, Sep 19 2019
-
Sage
[(11*n+5)^8 for n in (0..20)] # G. C. Greubel, Sep 19 2019
Formula
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (390625 +4291451671*x +243788893317*x^2 +1960512320323*x^3 +3909536602339*x^4 +2202777455589*x^5 +315080647543*x^6 +6960640897*x^7 +1679616*x^8)/(1-x)^9.
E.g.f.: (390625 +4294576671*x +136919996257*x^2 +585564673386*x^3 +729964989831*x^4 +353933730150*x^5 +74628778686*x^6 +6781535508*x^7 + 214358881*x^8)*exp(x). (End)