A017458 a(n) = (11*n + 5)^10.
9765625, 1099511627776, 205891132094649, 6278211847988224, 79792266297612001, 604661760000000000, 3255243551009881201, 13744803133596058624, 48398230717929318249, 148024428491834392576
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+5)^10); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+5)^10: n in [0..10]]; // Vincenzo Librandi, Sep 03 2011
-
Maple
seq((11*n+5)^10, n=0..20); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11*Range[21] -6)^10 (* G. C. Greubel, Sep 19 2019 *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{9765625,1099511627776,205891132094649,6278211847988224,79792266297612001,604661760000000000,3255243551009881201,13744803133596058624,48398230717929318249,148024428491834392576,404555773570791015625},20] (* Harvey P. Dale, Aug 19 2020 *)
-
PARI
vector(20, n, (11*n-6)^10) \\ G. C. Greubel, Sep 19 2019
-
Sage
[(11*n+5)^10 for n in (0..20)] # G. C. Greubel, Sep 19 2019
Formula
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (9765625 +1099404205901*x +193797041298488*x^2 +4073880923146640* x^3 +21874532039020442*x^4 +38639279895450554*x^5 +24069986191404704*x^6 +4993111339147592*x^7 +274024159430165*x^8 +2015328772513*x^9 +60466176* x^10)/(1-x)^11.
E.g.f.: (9765625 +1099501862151*x +101846059302361*x^2 +943972829470330* x^3 +2329598652561730*x^4 +2220242776827075*x^5 +974547942271827*x^6 + 214025260632480*x^7 +23938528035675*x^8 +1285081491595*x^9 +25937424601* x^10)*exp(x). (End)