A017459 a(n) = (11*n + 5)^11.
48828125, 17592186044416, 5559060566555523, 238572050223552512, 3909821048582988049, 36279705600000000000, 231122292121701565271, 1127073856954876807168, 4501035456767426597157, 15394540563150776827904
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+5)^11); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+5)^11: n in [0..10]]; // Vincenzo Librandi, Sep 03 2011
-
Maple
seq((11*n+5)^11, n=0..20); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11Range[0,20]+5)^11 (* Harvey P. Dale, May 12 2011 *)
-
PARI
vector(20, n, (11*n-6)^11) \\ G. C. Greubel, Sep 19 2019
-
Sage
[(11*n+5)^11 for n in (0..20)] # G. C. Greubel, Sep 19 2019
Formula
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (48828125 +17591600106916*x +5347957556678781*x^2 + 173024396961630192*x^3 +1409984186533172778*x^4 +3893323100536505064*x^5 +4065965093212217778*x^6 +1612934439380337744*x^7 +220215589053761433* x^8 +7882270656385972*x^9 +34267542742961*x^10 +362797056*x^11)/(1-x)^12.
E.g.f.: (48828125 +17592137216291*x +2761938121647408*x^2 + 36991274172198511*x^3 +124534035099698400*x^4 +158840151787803530*x^5 + 93615574446397542*x^6 +28270098736853457*x^7 +4580560974275055*x^8 + 396972283518305*x^9 +17118700236660*x^10 +285311670611*x^11)*exp(x). (End)