A017460 a(n) = (11*n + 5)^12.
244140625, 281474976710656, 150094635296999121, 9065737908494995456, 191581231380566414401, 2176782336000000000000, 16409682740640811134241, 92420056270299898187776, 418596297479370673535601, 1601032218567680790102016
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+5)^12); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+5)^12: n in [0..10]]; // Vincenzo Librandi, Sep 03 2011
-
Maple
seq((11*n+5)^12, n=0..20); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11*Range[21] -6)^12 (* G. C. Greubel, Sep 19 2019 *)
-
PARI
vector(20, n, (11*n-6)^12) \\ G. C. Greubel, Sep 19 2019
-
Sage
[(11*n+5)^12 for n in (0..20)] # G. C. Greubel, Sep 19 2019
Formula
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (244140625 +281471802882531*x +146435479642729343*x^2 + 7136462627993219301*x^3 +85353518454518704170*x^4 +350628073514443644414 *x^5 +569002784856695826846*x^6 +380284494715132979466*x^7 + 101126771751016700469*x^8 +9408164121360836975*x^9 +224644345794247731* x^10 +582593939059393*x^11 +2176782336*x^12)/(1-x)^13.
E.g.f.: (244140625 +281474732570031*x +74765842793859217*x^2 + 1436049737881664906*x^3 +6509071735779405221*x^4 +10900283493364894200* x^5 +8393947455360064312*x^6 +3347919415332356436*x^7 + 736963256712968142*x^8 +91671288202929325*x^9 +6335345645917255*x^10 + 224254973100246*x^11 +3138428376721*x^12)*exp(x). (End)