cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017464 a(n) = (11*n + 6)^4.

Original entry on oeis.org

1296, 83521, 614656, 2313441, 6250000, 13845841, 26873856, 47458321, 78074896, 121550625, 181063936, 260144641, 362673936, 492884401, 655360000, 855036081, 1097199376, 1387488001, 1731891456, 2136750625, 2608757776, 3154956561, 3782742016, 4499860561, 5314410000
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+6)^m: A017461 (m=1), A017462 (m=2), A017463 (m=3), this sequence (m=4), A017465 (m=5), A017466 (m=6), A017467 (m=7), A017468 (m=8), A017469 (m=9), A017470 (m=10), A017471 (m=11), A017472 (m=12).

Programs

  • GAP
    List([0..30], n-> (11*n+6)^4); # G. C. Greubel, Sep 19 2019
  • Magma
    [(11*n+6)^4: n in [0..30]]; // Vincenzo Librandi, Sep 03 2011
    
  • Maple
    seq((11*n+6)^4, n=0..30); # G. C. Greubel, Sep 19 2019
  • Mathematica
    (11*Range[30] -5)^4 (* G. C. Greubel, Sep 19 2019 *)
    LinearRecurrence[{5,-10,10,-5,1},{1296,83521,614656,2313441,6250000},30] (* Harvey P. Dale, Oct 11 2021 *)
  • PARI
    vector(30, n, (11*n-5)^4) \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    [(11*n+5)^4 for n in (0..30)] # G. C. Greubel, Sep 19 2019
    

Formula

From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (1296 +77041*x +210011*x^2 +62411*x^3 +625*x^4)/(1-x)^5.
E.g.f.: (1296 +82225*x +224455*x^2 +119790*x^3 +14641*x^4)*exp(x). (End)