A017471 a(n) = (11*n + 6)^11.
362797056, 34271896307633, 8293509467471872, 317475837322472439, 4882812500000000000, 43513917611435838661, 269561249468963094528, 1287831418538085836267, 5062982072492057196544, 17103393581163134765625
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+6)^11); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+6)^11: n in [0..10]]; // Vincenzo Librandi, Sep 04 2011
-
Maple
seq((11*n+6)^11, n=0..20); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11*Range[20] -5)^11 (* G. C. Greubel, Sep 19 2019 *)
-
PARI
vector(20, n, (11*n-5)^11) \\ G. C. Greubel, Sep 19 2019
-
Sage
[(11*n+6)^11 for n in (0..20)] # G. C. Greubel, Sep 19 2019
Formula
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (362797056 +34267542742961*x +7882270656385972*x^2 + 220215589053761433*x^3 +1612934439380337744*x^4 +4065965093212217778*x^5 +3893323100536505064*x^6 +1409984186533172778*x^7 +173024396961630192* x^8 +5347957556678781*x^9 +17591600106916*x^10 +48828125 x^11)/(1-x)^12.
E.g.f.: (362797056 +34271533510577*x +4112483018826831*x^2 + 48783020707697111*x^3 +152605546678854500*x^4 +184932081242538212*x^5 + 104853627173466171*x^6 +30701237124182097*x^7 +4849119426541500*x^8 + 411237867048855*x^9 +17404011907271*x^10 +285311670611*x^11)*exp(x). (End)