A017474 a(n) = (11*n + 7)^2.
49, 324, 841, 1600, 2601, 3844, 5329, 7056, 9025, 11236, 13689, 16384, 19321, 22500, 25921, 29584, 33489, 37636, 42025, 46656, 51529, 56644, 62001, 67600, 73441, 79524, 85849, 92416, 99225, 106276, 113569, 121104, 128881, 136900, 145161, 153664, 162409, 171396, 180625, 190096, 199809
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n-> (11*n+7)^2); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+7)^2: n in [0..50]]; // Vincenzo Librandi, Sep 04 2011
-
Maple
seq((11*n+7)^2, n=0..50); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11 Range[0,50]+7)^2 (* or *) LinearRecurrence[{3,-3,1},{49,324,841},50] (* Harvey P. Dale, May 19 2019 *)
-
PARI
a(n)=(11*n+7)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[(11*n+7)^2 for n in (0..50)] # G. C. Greubel, Sep 19 2019
Formula
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (49 +177*x +16*x^2)/(1-x)^3.
E.g.f.: (49 +275*x +121*x^2)*exp(x). (End)