A017475 a(n) = (11*n + 7)^3.
343, 5832, 24389, 64000, 132651, 238328, 389017, 592704, 857375, 1191016, 1601613, 2097152, 2685619, 3375000, 4173281, 5088448, 6128487, 7301384, 8615125, 10077696, 11697083, 13481272, 15438249, 17576000, 19902511, 22425768, 25153757, 28094464, 31255875, 34645976, 38272753, 42144192
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
GAP
List([0..40], n-> (11*n+7)^3); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+7)^3: n in [0..40]]; // Vincenzo Librandi, Sep 04 2011
-
Maple
seq((11*n+7)^3, n=0..40); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11*Range[0,40]+7)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{343,5832, 24389,64000}, 40] (* Harvey P. Dale, Oct 18 2014 *)
-
Maxima
makelist((11*n+7)^3, n,0,40); /* Martin Ettl, Oct 21 2012 */
-
PARI
a(n) = (11*n+7)^3; \\ Altug Alkan, Sep 08 2018
-
Sage
[(11*n+7)^3 for n in (0..40)] # G. C. Greubel, Sep 19 2019
Formula
G.f.: (343 + 4460*x + 3119*x^2 + 64*x^3)/(1-x)^4. - R. J. Mathar, Jun 24 2009
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=343, a(1)=5832, a(2)=24389, a(3)=64000. - Harvey P. Dale, Oct 18 2014
E.g.f.: (343 +5489*x +6534*x^2 +1331*x^3)*exp(x). - G. C. Greubel, Sep 19 2019