A017476 a(n) = (11*n + 7)^4.
2401, 104976, 707281, 2560000, 6765201, 14776336, 28398241, 49787136, 81450625, 126247696, 187388721, 268435456, 373301041, 506250000, 671898241, 875213056, 1121513121, 1416468496, 1766100625, 2176782336, 2655237841, 3208542736, 3844124001, 4569760000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
GAP
List([0..30], n-> (11*n+7)^4); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+7)^4: n in [0..30]]; // Vincenzo Librandi, Sep 04 2011
-
Maple
seq((11*n+7)^4, n=0..30); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11*Range[0,30]+7)^4 (* or *) LinearRecurrence[{5,-10,10,-5,1}, {2401, 104976,707281,2560000,6765201}, 30] (* Harvey P. Dale, Oct 21 2015 *)
-
PARI
vector(30, n, (11*n-4)^4) \\ G. C. Greubel, Sep 19 2019
-
Sage
[(11*n+7)^4 for n in (0..30)] # G. C. Greubel, Sep 19 2019
Formula
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=2401, a(1)=104976, a(2)=707281, a(3)=2560000, a(4)=6765201. - Harvey P. Dale, Oct 21 2015
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (2401 +92971*x +206411*x^2 +49345*x^3 +256*x^4)/(1-x)^5.
E.g.f.: (2401 +102575*x +249865*x^2 +125114*x^3 +14641 x^4)*exp(x). (End)