A017482 a(n) = (11*n + 7)^10.
282475249, 3570467226624, 420707233300201, 10485760000000000, 119042423827613001, 839299365868340224, 4297625829703557649, 17490122876598091776, 59873693923837890625, 179084769654285362176, 480682838924478847449, 1180591620717411303424, 2692452204196940400601
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+7)^10); # G. C. Greubel, Sep 19 2019
-
Magma
[(11*n+7)^10: n in [0..10]]; // Vincenzo Librandi, Sep 04 2011
-
Maple
seq((11*n+7)^10, n=0..20); # G. C. Greubel, Sep 19 2019
-
Mathematica
(11*Range[21] -4)^10 (* G. C. Greubel, Sep 19 2019 *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{282475249,3570467226624,420707233300201,10485760000000000,119042423827613001,839299365868340224,4297625829703557649,17490122876598091776,59873693923837890625,179084769654285362176,480682838924478847449},30] (* Harvey P. Dale, Apr 21 2020 *)
-
PARI
vector(20, n, (11*n-4)^10) \\ G. C. Greubel, Sep 19 2019
-
Sage
[(11*n+7)^10 for n in (0..20)] # G. C. Greubel, Sep 19 2019
Formula
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (282475249 +3567359998885*x +381447629946032*x^2 +6054309522746024* x^3 +26248927783563266*x^4 +38310933951284930*x^5 +19699677304461320*x^6 +3287461918700048*x^7 +134823999028181*x^8 +576638856289*x^9 +1048576* x^10)/(1-x)^11.
E.g.f.: (282475249 +3570184751375*x +206783290661101*x^2 + 1539058236550670*x^3 +3317056068374290*x^4 +2872963553757759*x^5 +1172277747064347*x^6 +242804694252120 x^7 +25867757964675*x^8 +1332240445415*x^9 +25937424601*x^10)*exp(x). (End)