A017492 a(n) = (11*n + 8)^8.
16777216, 16983563041, 656100000000, 7984925229121, 53459728531456, 248155780267521, 899194740203776, 2724905250390625, 7213895789838336, 17181861798319201, 37588592026706176, 76686282021340161, 147578905600000000, 270281038127131201, 474373168346071296
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+8)^8); # G. C. Greubel, Sep 22 2019
-
Magma
[(11*n+8)^8: n in [0..20]]; // G. C. Greubel, Sep 22 2019
-
Maple
seq((11*n+8)^8, n=0..20); # G. C. Greubel, Sep 22 2019
-
Mathematica
(11*Range[21] -3)^8 (* G. C. Greubel, Sep 22 2019 *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{16777216,16983563041,656100000000,7984925229121,53459728531456,248155780267521,899194740203776,2724905250390625,7213895789838336},20] (* Harvey P. Dale, Jul 02 2024 *)
-
PARI
vector(20, n, (11*n-3)^8) \\ G. C. Greubel, Sep 22 2019
-
Sage
[(11*n+8)^8 for n in (0..20)] # G. C. Greubel, Sep 22 2019
Formula
From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (16777216 +16832568097*x +503851912407*x^2 +2690024212453*x^3 + 3790496103139*x^4 +1500946746723*x^5 +139306025317*x^6 +1475730007*x^7 + 6561*x^8)/(1-x)^9.
E.g.f.: (16777216 +16966785825*x +311074825567*x^2 +1011259856838*x^3 + 1057862922501*x^4 +451919091162*x^5 +86384857482*x^6 +7249227612*x^7 + 214358881*x^8)*exp(x). (End)
Extensions
More terms added by G. C. Greubel, Sep 22 2019