A017495 a(n) = (11*n + 8)^11.
8589934592, 116490258898219, 17714700000000000, 550329031716248441, 7516865509350965248, 62050608388552823487, 364375289404334925824, 1673432436896142578125, 6382393305518410039296, 21048519522998348950643, 61759259534823101765632, 164621598066108688876929
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+8)^11); # G. C. Greubel, Sep 22 2019
-
Magma
[(11*n+8)^11: n in [0..20]]; // G. C. Greubel, Sep 22 2019
-
Maple
seq((11*n+8)^11, n=0..20); # G. C. Greubel, Sep 22 2019
-
Mathematica
(11*Range[0,20]+8)^11 (* Harvey P. Dale, Dec 18 2011 *)
-
PARI
vector(20, n, (11*n-3)^11) \\ G. C. Greubel, Sep 22 2019
-
Sage
[(11*n+8)^11 for n in (0..20)] # G. C. Greubel, Sep 22 2019
Formula
From G. C. Greubel, Sep 22 2019: (Start)
G.f.: (8589934592 +116387179683115*x +16317383828904444*x^2 + 345439099017920655*x^3 +2056463723815998816*x^4 +4330360244540059158*x^5 +3485249533342266888*x^6 +1049164126934199606*x^7 +103278745612305120* x^8 +2335591020671359*x^9 +4049563043900*x^10 +177147*x^11)/(1-x)^12.
E.g.f.: (8589934592 +116481668963627*x +8740864036069077*x^2 + 82922398983834751*x^3 +225890484585013050*x^4 +248275055013875318*x^5 + 130670920341658389*x^6 +36045281196709257*x^7 +5418280840195080*x^8 + 440547156847985*x^9 +17974635248493*x^10 +285311670611*x^11)*exp(x). (End)
Extensions
More terms added by G. C. Greubel, Sep 22 2019