A017502 a(n) = (11*n + 9)^6.
531441, 64000000, 887503681, 5489031744, 22164361129, 68719476736, 177978515625, 404567235136, 832972004929, 1586874322944, 2839760855281, 4826809000000, 7858047974841, 12332795428864, 18755369578009
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+9)^6); # G. C. Greubel, Oct 28 2019
-
Magma
[(11*n+9)^6: n in [0..20]]; // G. C. Greubel, Oct 28 2019
-
Maple
seq((11*n+9)^6, n=0..20); # G. C. Greubel, Oct 28 2019
-
Mathematica
(11Range[0,20]+9)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {531441,64000000,887503681,5489031744,22164361129,68719476736, 177978515625}, 20] (* Harvey P. Dale, Dec 06 2018 *)
-
Maxima
makelist((11*n+9)^6, n, 0, 30); /* Martin Ettl, Oct 21 2012 */
-
PARI
vector(21, n, (11*n-2)^6) \\ G. C. Greubel, Oct 28 2019
-
Sage
[(11*n+9)^6 for n in (0..20)] # G. C. Greubel, Oct 28 2019
Formula
From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (531441 + 60279913*x + 450663942*x^2 + 601905542*x^3 + 157316657*x^4 + 4826361*x^5 + 64*x^6)/(1-x)^7.
E.g.f.: (531441 + 63468559*x + 380017561*x^2 + 502998210*x^3 + 219907820*x^4 + 35270169*x^5 + 1771561*x^6)*exp(x). (End)