A017512 a(n) = (11*n + 10)^4.
10000, 194481, 1048576, 3418801, 8503056, 17850625, 33362176, 57289761, 92236816, 141158161, 207360000, 294499921, 406586896, 547981281, 723394816, 937890625, 1196883216, 1506138481, 1871773696, 2300257521, 2798410000, 3373402561, 4032758016, 4784350561
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
GAP
List([0..30], n-> (11*n+10)^4); # G. C. Greubel, Oct 29 2019
-
Magma
[(11*n+10)^4: n in [0..30]]; // G. C. Greubel, Oct 29 2019
-
Maple
A017512:=n->(11*n+10)^4: seq(A017512(n), n=0..30); # Wesley Ivan Hurt, Apr 11 2017
-
Mathematica
(11*Range[0,30]+10)^4 (* or *) LinearRecurrence[{5,-10,10,-5,1}, {10000, 194481,1048576,3418801,8503056},30] (* Harvey P. Dale, Dec 24 2014 *)
-
PARI
vector(31, n, (11*n-1)^4) \\ G. C. Greubel, Oct 29 2019
-
Sage
[(11*n+10)^4 for n in (0..30)] # G. C. Greubel, Oct 29 2019
Formula
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (10000 + 144481*x + 176171*x^2 + 20731*x^3 + x^4)/(1-x)^5.
E.g.f.: (10000 + 184481*x + 334807*x^2 + 141086*x^3 + 14641*x^4)*exp(x). (End)