A017516 a(n) = (11*n + 10)^8.
100000000, 37822859361, 1099511627776, 11688200277601, 72301961339136, 318644812890625, 1113034787454976, 3282116715437121, 8507630225817856, 19925626416901921, 42998169600000000, 86730203469006241
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+10)^8); # G. C. Greubel, Oct 29 2019
-
Magma
[(11*n+10)^8: n in [0..20]]; // G. C. Greubel, Oct 29 2019
-
Maple
seq((11*n+10)^8, n=0..20); # G. C. Greubel, Oct 29 2019
-
Mathematica
(11*Range[0,20]+10)^8 (* or *) LinearRecurrence[{9,-36,84,-126,126,-84, 36,-9,1}, {100000000,37822859361,1099511627776,11688200277601, 72301961339136, 318644812890625,1113034787454976,3282116715437121, 8507630225817856}, 20] (* Harvey P. Dale, Mar 28 2015 *)
-
PARI
vector(21, n, (11*n-1)^8) \\ G. C. Greubel, Oct 29 2019
-
Sage
[(11*n+10)^8 for n in (0..20)] # G. C. Greubel, Oct 29 2019
Formula
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Harvey P. Dale, Mar 28 2015
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (100000000 + 36922859361*x + 762705893527*x^2 + 3145818564613*x^3 + 3526057254339*x^4 + 1096474378339*x^5 + 74441150053*x^6 + 429981687*x^7 + x^8)/(1-x)^9.
E.g.f.: (100000000 + 37722859361*x + 511982954527*x^2 + 1417172328726*x^3 + 1333126606581*x^4 + 526757558250*x^5 + 94718280426*x^6 + 7561022348*x^7 + 214358881*x^8)*exp(x). (End)