A017518 a(n) = (11*n + 10)^10.
10000000000, 16679880978201, 1125899906842624, 21611482313284249, 210832519264920576, 1346274334462890625, 6428888932339941376, 24842341419143568849, 81707280688754689024, 236736367459211723401
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+10)^10); # G. C. Greubel, Oct 29 2019
-
Magma
[(11*n+10)^10: n in [0..20]]; // G. C. Greubel, Oct 29 2019
-
Maple
seq((11*n+10)^10, n=0..20); # G. C. Greubel, Oct 29 2019
-
Mathematica
(11Range[0,20]+10)^10 (* Harvey P. Dale, Jul 15 2017 *)
-
PARI
vector(21, n, (11*n-1)^10) \\ G. C. Greubel, Oct 29 2019
-
Sage
[(11*n+10)^10 for n in (0..20)] # G. C. Greubel, Oct 29 2019
Formula
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (10000000000 + 16569880978201*x + 942971216082413*x^2 + 10142326791816440*x^3 + 32281828333734992*x^4 + 35474405873171354*x^5 + 13610715373012154*x^6 + 1612091585741792*x^7 + 40745420207240*x^8 + 61917364213*x^9 + x^10)/(1-x)^11.
E.g.f.: (10000000000 + 16669880978201*x + 546275072443111*x^2 + 3047302039281830*x^3 + 5461469997038605*x^4 + 4142091263396625*x^5 + 1525402079982627*x^6 + 290796919504080*x^7 + 28906295102850*x^8 + 1402978876145*x^9 + 25937424601*x^10)*exp(x). (End)