A017534 a(n) = (12*n + 1)^2.
1, 169, 625, 1369, 2401, 3721, 5329, 7225, 9409, 11881, 14641, 17689, 21025, 24649, 28561, 32761, 37249, 42025, 47089, 52441, 58081, 64009, 70225, 76729, 83521, 90601, 97969, 105625, 113569, 121801
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
I:=[1, 169, 625]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
-
Mathematica
CoefficientList[Series[(1+166*x+121*x^2)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 07 2012 *) LinearRecurrence[{3,-3,1},{1,169,625},30] (* Harvey P. Dale, Feb 27 2023 *)
-
PARI
a(n)=(12*n+1)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
SageMath
[(12*n+1)^2 for n in range(51)] # G. C. Greubel, Dec 24 2022
Formula
G.f.: (1 + 166*x + 121*x^2 )/(1-x)^3. - R. J. Mathar, Mar 10 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 07 2012
E.g.f.: (1 + 168*x + 144*x^2)*exp(x). - G. C. Greubel, Dec 24 2022