A017669 Numerator of sum of -3rd powers of divisors of n.
1, 9, 28, 73, 126, 7, 344, 585, 757, 567, 1332, 511, 2198, 387, 392, 4681, 4914, 757, 6860, 4599, 1376, 2997, 12168, 455, 15751, 9891, 20440, 3139, 24390, 147, 29792, 37449, 4144, 22113, 6192, 55261, 50654, 15435, 61544, 7371, 68922, 172, 79508, 24309, 10598
Offset: 1
Examples
1, 9/8, 28/27, 73/64, 126/125, 7/6, 344/343, 585/512, 757/729, 567/500, 1332/1331, 511/432, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vincenzo Librandi)
Programs
-
Magma
[Numerator(DivisorSigma(3,n)/n^3): n in [1..40]]; // G. C. Greubel, Nov 08 2018
-
Mathematica
Table[Numerator[DivisorSigma[-3, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *) Table[Numerator[DivisorSigma[3, n]/n^3], {n, 1, 40}] (* G. C. Greubel, Nov 08 2018 *)
-
PARI
vector(40, n, numerator(sigma(n, 3)/n^3)) \\ G. C. Greubel, Nov 08 2018
Formula
Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^3*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018
From Amiram Eldar, Apr 02 2024: (Start)
Dirichlet g.f. of a(n)/A017670(n): zeta(s)*zeta(s+3).
Comments