A017671 Numerator of sum of -4th powers of divisors of n.
1, 17, 82, 273, 626, 697, 2402, 4369, 6643, 5321, 14642, 3731, 28562, 20417, 51332, 69905, 83522, 112931, 130322, 85449, 196964, 124457, 279842, 179129, 391251, 242777, 538084, 46839, 707282, 218161, 923522, 1118481, 1200644, 41761, 1503652, 604513, 1874162
Offset: 1
Examples
1, 17/16, 82/81, 273/256, 626/625, 697/648, 2402/2401, 4369/4096, 6643/6561, 5321/5000, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[Numerator(DivisorSigma(4,n)/n^4): n in [1..40]]; // G. C. Greubel, Nov 08 2018
-
Mathematica
Table[Numerator[DivisorSigma[-4, n]], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *) Table[Numerator[DivisorSigma[4, n]/n^4], {n, 1, 40}] (* G. C. Greubel, Nov 08 2018 *)
-
PARI
vector(40, n, numerator(sigma(n, 4)/n^4)) \\ G. C. Greubel, Nov 08 2018
Formula
Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^4*(1 - x^k)). - Ilya Gutkovskiy, May 24 2018
From Amiram Eldar, Apr 02 2024: (Start)
Dirichlet g.f. of a(n)/A017672(n): zeta(s)*zeta(s+4).
Comments