A017675 Numerator of sum of -6th powers of divisors of n.
1, 65, 730, 4161, 15626, 23725, 117650, 266305, 532171, 101569, 1771562, 506255, 4826810, 3823625, 2281396, 17043521, 24137570, 34591115, 47045882, 32509893, 85884500, 57575765, 148035890, 97201325, 244156251, 12067025, 387952660, 244770825, 594823322
Offset: 1
Examples
1, 65/64, 730/729, 4161/4096, 15626/15625, 23725/23328, 117650/117649, 266305/262144, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[Numerator(DivisorSigma(6,n)/n^6): n in [1..20]]; // G. C. Greubel, Nov 07 2018
-
Mathematica
A017675[n_Integer] := Numerator[DivisorSigma[-6, n]]; Table[A017675[n], {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *) Table[Numerator[DivisorSigma[6, n]/n^6], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
-
PARI
vector(20, n, numerator(sigma(n, 6)/n^6)) \\ G. C. Greubel, Nov 07 2018
Formula
Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^6*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
Dirichlet g.f. of a(n)/A017676(n): zeta(s)*zeta(s+6).
Comments