A017677 Numerator of sum of -7th powers of divisors of n.
1, 129, 2188, 16513, 78126, 23521, 823544, 2113665, 4785157, 5039127, 19487172, 9032611, 62748518, 13279647, 56979896, 270549121, 410338674, 205761751, 893871740, 645047319, 1801914272, 628461297, 3404825448, 385391585, 6103593751, 4047279411, 10465138360, 34691791
Offset: 1
Examples
1, 129/128, 2188/2187, 16513/16384, 78126/78125, 23521/23328, 823544/823543, 2113665/2097152, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[Numerator(DivisorSigma(7,n)/n^7): n in [1..20]]; // G. C. Greubel, Nov 07 2018
-
Mathematica
Table[Numerator[Total[Divisors[n]^-7]],{n,30}] (* Harvey P. Dale, Nov 29 2014 *) Table[Numerator[DivisorSigma[7, n]/n^7], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
-
PARI
vector(20, n, numerator(sigma(n, 7)/n^7)) \\ G. C. Greubel, Nov 07 2018
Formula
Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^7*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
Dirichlet g.f. of a(n)/A017678(n): zeta(s)*zeta(s+7).
Comments