A017681 Numerator of sum of -9th powers of divisors of n.
1, 513, 19684, 262657, 1953126, 93499, 40353608, 134480385, 387440173, 500976819, 2357947692, 1292535097, 10604499374, 2587675113, 1423901192, 68853957121, 118587876498, 7361363287, 322687697780, 256501107891, 113474345696, 302406791499, 1801152661464, 24510295355
Offset: 1
Examples
1, 513/512, 19684/19683, 262657/262144, 1953126/1953125, 93499/93312, 40353608/40353607, 134480385/134217728, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[Numerator(DivisorSigma(9,n)/n^9): n in [1..20]]; // G. C. Greubel, Nov 07 2018
-
Mathematica
Table[Numerator[Total[1/Divisors[n]^9]],{n,20}] (* Harvey P. Dale, Aug 26 2013 *) Table[Numerator[DivisorSigma[9, n]/n^9], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
-
PARI
vector(20, n, numerator(sigma(n, 9)/n^9)) \\ G. C. Greubel, Nov 07 2018
Formula
Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^9*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
Dirichlet g.f. of a(n)/A017682(n): zeta(s)*zeta(s+9).
Comments