cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017683 Numerator of sum of -10th powers of divisors of n.

Original entry on oeis.org

1, 1025, 59050, 1049601, 9765626, 30263125, 282475250, 1074791425, 3486843451, 200195333, 25937424602, 10329823175, 137858491850, 144768565625, 23066408612, 1100586419201, 2015993900450, 3574014537275, 6131066257802, 5125005407613, 16680163512500, 13292930108525
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Examples

			1, 1025/1024, 59050/59049, 1049601/1048576, 9765626/9765625, 30263125/30233088, 282475250/282475249, ...
		

Crossrefs

Cf. A017684 (denominator), A013668, A013669.

Programs

  • Magma
    [Numerator(DivisorSigma(10,n)/n^10): n in [1..20]]; // G. C. Greubel, Nov 07 2018
  • Mathematica
    Table[Numerator[Total[Divisors[n]^-10]],{n,20}] (* Harvey P. Dale, Sep 04 2018 *)
    Table[Numerator[DivisorSigma[10, n]/n^10], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 10)/n^10)) \\ G. C. Greubel, Nov 07 2018
    

Formula

Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^10*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017684(n) = zeta(10) (A013668).
Dirichlet g.f. of a(n)/A017684(n): zeta(s)*zeta(s+10).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017684(k) = zeta(11) (A013669). (End)