A017683 Numerator of sum of -10th powers of divisors of n.
1, 1025, 59050, 1049601, 9765626, 30263125, 282475250, 1074791425, 3486843451, 200195333, 25937424602, 10329823175, 137858491850, 144768565625, 23066408612, 1100586419201, 2015993900450, 3574014537275, 6131066257802, 5125005407613, 16680163512500, 13292930108525
Offset: 1
Examples
1, 1025/1024, 59050/59049, 1049601/1048576, 9765626/9765625, 30263125/30233088, 282475250/282475249, ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[Numerator(DivisorSigma(10,n)/n^10): n in [1..20]]; // G. C. Greubel, Nov 07 2018
-
Mathematica
Table[Numerator[Total[Divisors[n]^-10]],{n,20}] (* Harvey P. Dale, Sep 04 2018 *) Table[Numerator[DivisorSigma[10, n]/n^10], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
-
PARI
vector(20, n, numerator(sigma(n, 10)/n^10)) \\ G. C. Greubel, Nov 07 2018
Formula
Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^10*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
Dirichlet g.f. of a(n)/A017684(n): zeta(s)*zeta(s+10).
Comments