cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A017695 Numerator of sum of -16th powers of divisors of n.

Original entry on oeis.org

1, 65537, 43046722, 4295032833, 152587890626, 1410576509857, 33232930569602, 281479271743489, 1853020231898563, 5000076293978081, 45949729863572162, 30814514057170571, 665416609183179842, 1088993285370003137, 6568408508343827972, 18447025552981295105, 48661191875666868482
Offset: 1

Views

Author

Keywords

Comments

Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Cf. A017696 (denominator), A013674, A013675.

Programs

  • Magma
    [Numerator(DivisorSigma(16,n)/n^16): n in [1..20]]; // G. C. Greubel, Nov 05 2018
  • Mathematica
    Table[Numerator[Total[1/Divisors[n]^16]],{n,20}] (* Harvey P. Dale, Sep 26 2014 *)
    Table[Numerator[DivisorSigma[16, n]/n^16], {n, 1, 20}] (* G. C. Greubel, Nov 05 2018 *)
  • PARI
    vector(20, n, numerator(sigma(n, 16)/n^16)) \\ G. C. Greubel, Nov 05 2018
    

Formula

From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017696(n) = zeta(16) (A013674).
Dirichlet g.f. of a(n)/A017696(n): zeta(s)*zeta(s+16).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017696(k) = zeta(17) (A013675). (End)